Tax Policy and Heterogeneous Investment Behavior

Eric Zwick and James Mahon*

*The views expressed here are the authors' and do not necessarily reflect those of the Internal Revenue Service or the Office of Tax Analysis.

Zwick: Chicago Booth and NBER, ezwick@chicagobooth.edu Mahon: Deloitte, james.mahon.3@gmail.com

1. Do tax incentives affect business investment?

Hall and Jorgenson (1967); Summers (1981); Feldstein (1982); Poterba and Summers (1983); Auerbach and Hassett (1992); Cummins, Hassett and Hubbard (1994, 1996); Chirinko, Fazzari and Meyer (1999); Desai and Goolsbee (2004); House and Shapiro (2008); Edgerton (2010); Yagan (2015)

1. Do tax incentives affect business investment?

Hall and Jorgenson (1967); Summers (1981); Feldstein (1982); Poterba and Summers (1983); Auerbach and Hassett (1992); Cummins, Hassett and Hubbard (1994, 1996); Chirinko, Fazzari and Meyer (1999); Desai and Goolsbee (2004); House and Shapiro (2008); Edgerton (2010); Yagan (2015)

2. Do financial frictions affect business investment?

Fazzari, Hubbard and Petersen (1988); Hoshi, Kashyap, and Scharfstein (1991); Kaplan and Zingales (1997); Lamont (1997); Erickson and Whited (2000); Almeida, Campello and Weisbach (2004); Rauh (2006); Cummins, Hassett and Oliner (2006); Chernenko and Sunderam (2012); Bakke and Whited (2012); Chaney, Sraer and Thesmar (2012)

1. Do tax incentives affect business investment?

Hall and Jorgenson (1967); Summers (1981); Feldstein (1982); Poterba and Summers (1983); Auerbach and Hassett (1992); Cummins, Hassett and Hubbard (1994, 1996); Chirinko, Fazzari and Meyer (1999); Desai and Goolsbee (2004); House and Shapiro (2008); Edgerton (2010); Yagan (2015)

2. Do financial frictions affect business investment?

Fazzari, Hubbard and Petersen (1988); Hoshi, Kashyap, and Scharfstein (1991); Kaplan and Zingales (1997); Lamont (1997); Erickson and Whited (2000); Almeida, Campello and Weisbach (2004); Rauh (2006); Cummins, Hassett and Oliner (2006); Chernenko and Sunderam (2012); Bakke and Whited (2012); Chaney, Sraer and Thesmar (2012)

3. Which model of firm behavior best fits the data?

Jorgenson (1963); Lucas (1967); Tobin (1969); Jensen and Meckling (1976); Auerbach (1979); Hayashi (1982); Myers and Majluf (1984); Stein (1989); Bertola and Caballero (1990); Abel and Eberly (1996); Caballero and Engel (1999); Cooper and Haltiwanger (2006); Abel and Eberly (2011)

- 1. Do tax incentives affect business investment? **Tax changes as natural experiments** + **New data**
- 2. Do financial constraints affect business investment? Tax changes reveal financial frictions.
- 3. Which model of firm behavior best fits the data?
 - The response to the tax changes we study:
 - ▶ is large, and
 - ► is amplified by costly external finance, but
 - ▶ only when the policy immediately affects cash flow.

Model Firm

Consider a firm buying \$1M of computers.

Year	0	1	2	3	4	5	Total
Deductions (000s)	200	320	192	115	115	58	1000
Tax Benefit ($\tau = 35\%$)	70	112	67.2	40.3	40.3	20.2	350

Model Firm

Consider a firm buying \$1M of computers.

Normal times:

Year	0	1	2	3	4	5	Total
Deductions (000s) Tax Benefit ($\tau = 35\%$)					115 40.3		1000 350
Cas	h ba	ck N	PV =	\$31	1K.		

Bonus times (50%):

Year	0	1	2	3	4	5	Total
Deductions (000s)				57.5			
Tax Benefit ($ au=35\%$)	210	56	33.6	20.2	20.2	10	350
Cas	h bao	ck <u>N</u>	<u> PV =</u>	\$331	lK.		

Model Firm

Consider a firm buying \$1M of computers.

Normal times:

			•	•	5	Total
Deductions (000s) Tax Benefit ($\tau = 35\%$)		192 67.2				
Tax Benefit ($\tau = 35\%$)						

Cash back today = 70K.

Bonus times (50%):

Year	0	1	2	3	4	5	Total
Deductions (000s) Tax Benefit ($\tau = 35\%$)				57.5 20.2			
, , , , , , , , , , , , , , , , , , ,				= \$21			

- $1. \ {\sf Baseline \ Effect}$
 - Policy Setting
 - Research Design
 - Data
 - Findings
- 2. Financial Frictions
 - ► Costly Finance
 - Managerial Myopia

1. Baseline Effect

- Policy Setting
- Research Design
- Data
- Findings
- 2. Financial Frictions
 - Costly Finance
 - Managerial Myopia

Estimate investment response to depreciation incentives

- Large firm temporary policy (Bonus ×2), different recessions
 - Difference-in-differences research design
 - House and Shapiro (2008) study Bonus I with agg data.
- Small firm policy always in place (Section 179)
 - Previously unstudied
 - Regression discontinuity research design

1. Baseline Effect

- Policy Setting
- Research Design
- Data
- Findings
- 2. Financial Frictions
 - Costly Finance
 - Managerial Myopia

Focus on one policy tool

- Past tax studies pool different reforms for power
 - Corporate/dividend rate, ITC, corporate form rule changes, depreciation incentives
- Mechanism for taxes on investment remains unclear.
 - Yagan (2015) finds dividend cut doesn't affect investment.

1. Baseline Effect

- Policy Setting
- Research Design
- Data
- Findings
- 2. Financial Frictions
 - Costly Finance
 - Managerial Myopia

Use tax data for a large sample of public and private firms

- Sample 10X size of Compustat, mostly private firms
- ► Past tax studies use Compustat ⇒ big SEs
 - Edgerton (2010) 95% confidence interval: [-0.046,-1.28].

- $1. \ {\sf Baseline \ Effect}$
 - Policy Setting
 - Research Design
 - Data
 - Findings

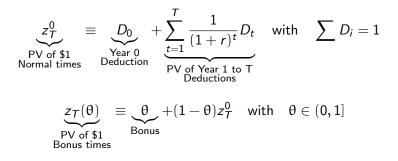
2. Financial Frictions

- Costly Finance
- Managerial Myopia

Reveal financial frictions with heterogeneity analysis

- I-CF sensitivities provide unreliable test of constraints
 - Kaplan and Zingales (1997), Abel and Eberly (2011)
- Clean shocks to cash flow, credit are rare
 - Exceptions: Lamont (1997), Chaney et al (2012)
- Small, private firms better setting for frictions

- $1. \ {\sf Baseline \ Effect}$
 - Policy Setting
 - Research Design
 - Data
 - Findings
- 2. Financial Frictions
 - ► Costly Finance
 - Managerial Myopia
- 3. Macro
 - Substitution
 - Aggregation


Part 1: The effect of bonus on investment

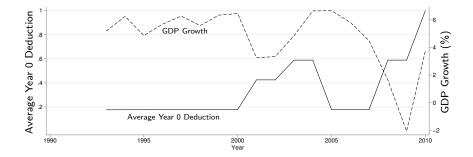
Policy Setting, Research Design, Data

► Allows additional first-year deductions for new equipment.

- ► Allows additional first-year deductions for new equipment.
- ▶ Bonus I: 30% in 2001, 2002; 50% in 2003, 2004
- ► Bonus II: 50% in 2008-09, 12-13; 100% in 2010-11
- Stated goal: to promote business investment and spur growth. Estimated cost: \$20-40B per year

- Allows additional first-year deductions for new equipment.
- Bonus I: 30% in 2001, 2002; 50% in 2003, 2004
- ▶ Bonus II: 50% in 2008-09, 12-13; 100% in 2010-11

$$\underbrace{z_{\mathcal{T}}(\theta)}_{\substack{\mathsf{PV} \text{ of } \$1\\ \mathsf{Bonus times}}} \equiv \underbrace{\theta}_{\substack{\mathsf{Bonus}}} + (1-\theta) z_{\mathcal{T}}^{0} \quad \mathsf{with} \quad \theta \in (0,1]$$


Normal times:

Year	0	1	2	3	4	5	Total
Deductions $z_5(0)$	200	320	192	115	115	58	1000 0.890

Bonus times (50%):

Year	0	1	2	3	4	5	Total
Deductions $z_5(0.5)$	600	160	96	57.5	57.5	29	1000 0.945

- Allows additional first-year deductions for new equipment.
- ▶ Bonus I: 30% in 2001, 2002; 50% in 2003, 2004
- ▶ Bonus II: 50% in 2008-09, 12-13; 100% in 2010-11
- ► Stated goal: to promote business investment and spur growth.

 $1. \ {\rm Bonus} \ {\rm allowance} \ {\rm is} \ {\rm more} \ {\rm valuable} \ {\rm for} \ {\rm longer} \ {\rm lived} \ {\rm items}.$

	Computers	Telephone Lines
Tax Life	5 year	15 year
$z_T(0)$	0.890	0.659
$z_{T}(0.5)$	0.945	0.829
Δz_T	0.055	0.170

- $1. \ \mbox{Bonus allowance is more valuable for longer lived items.}$
- 2. Industries differ in relative intensity of longer lived investment.

Short Duration (NAICS)	Long Duration (NAICS)
Rental and Leasing (532)	Utilities (221)
Publishing (511)	Pipeline Transport (486)
Data Processing (518)	Railroads (482)
Ground Transit (485)	Accommodations (721)
Professional Services (541)	Food Manufacturing (311)

- 1. Bonus allowance is more valuable for longer lived items.
- 2. Industries differ in relative intensity of longer lived investment.
- 3. Use tax data to compute weighted average present value of deductions, z_N , at four-digit NAICS level

where $\omega_N(T)$ is computed prior to the policy (1993-2000).

- 1. Bonus allowance is more valuable for longer lived items.
- 2. Industries differ in relative intensity of longer lived investment.
- 3. Use tax data to compute weighted average present value of deductions, z_N , at four-digit NAICS level
- 4. Use cross-sectional variation in bonus generosity to identify the effect of bonus (diff-in-diffs)

 $\Delta I_{\text{Rental and Leasing}}$ vs. $\Delta I_{\text{Utilities}}$

$$\log(I_{it}) = \alpha_i + \delta_t + \beta z_{N,t} + \gamma X_{it} + \varepsilon_{it}$$

Approach of Cummins, Hassett and Hubbard (1994, 1996), Desai and Goolsbee (2004), Edgerton (2010).

Larger sample, one policy change

Bonus Empirical Design

- $1. \ \mbox{Bonus allowance is more valuable for longer lived items.}$
- 2. Industries differ in relative intensity of longer lived investment.
- 3. Use tax data to compute weighted average present value of deductions, z_N , at four-digit NAICS level
- 4. Use cross-sectional variation in bonus generosity to identify the effect of bonus (diff-in-diffs)

$$\Delta I_{\text{Rental and Leasing}}$$
 vs. $\Delta I_{\text{Utilities}}$

$$\log(I_{it}) = \alpha_i + \delta_t + \beta z_{N,t} + \gamma X_{it} + \varepsilon_{it}$$

Approach of Cummins, Hassett and Hubbard (1994, 1996), Desai and Goolsbee (2004), Edgerton (2010).

Larger sample, one policy change

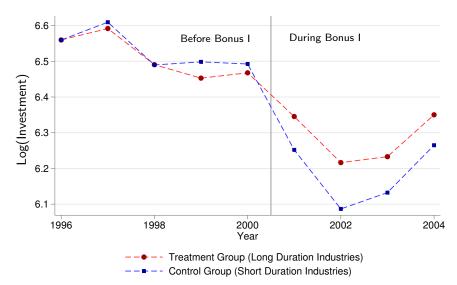
- 1. Bonus allowance is more valuable for longer lived items.
- 2. Industries differ in relative intensity of longer lived investment.
- 3. Use tax data to compute weighted average present value of deductions, z_N , at four-digit NAICS level
- 4. Use cross-sectional variation in bonus generosity to identify the effect of bonus (diff-in-diffs)
- 5. Identifying assumption: parallel trends.
 - ► If no bonus, average outcome paths similar across industries.
 - ► Concern: time-varying industry shocks coinciding with bonus.
 - E.g., durables investment more resilient in downturns.
 - ► Test graphically, with controls, placebo test, triple-diff.

BUSINESS TAX DATA

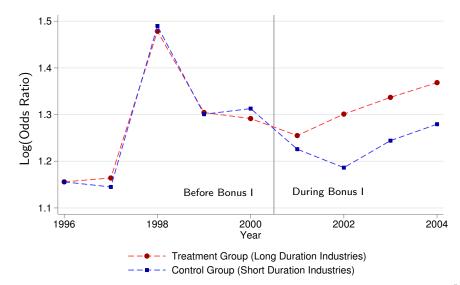
- $1.~\mbox{US}$ corporate tax data, 1993-2010
 - Size-stratified samples of ~ 100,000 corporate tax returns produced yearly by IRS Statistics of Income (SOI) division
 - We build a panel of returns covering 1993 to 2010.
 - Investment, income, expenses, balance sheet, payouts, employment, industry, filing geography
- $2. \ {\sf Sample \ restrictions}$
 - Subchapter C and S corporations
 - Positive deductions or income
 - Attached investment form
 - Average eligible investment greater than \$100K

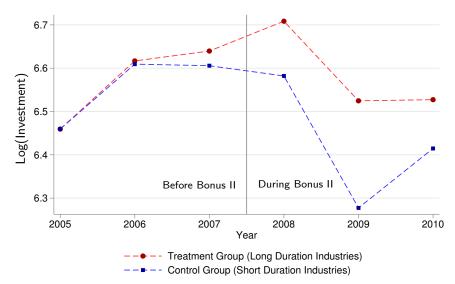
Final sample: 818,576 firm year observations; 128,151 firms.

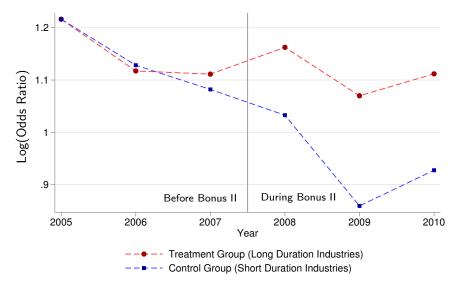
Tax Data


	Mean	Median	Count
Outcome Variables Investment (000s)	6,786.87	367.59	818,576
Policy Variables _{ZN,t}	0.90	0.89	818,576
Characteristics Sales (000s) Net Income Before Depreciation (000s)	180,423.8 15,392.59	25,920.92 1,474.65	818,576 818,576
Compustat			
	Mean	Median	Count
Outcome Variables Capital Expenditures (000s)	145,068	3,757	151,919
Characteristics Sales (000s) Net Income Before Depreciation (000s)	1,866,779 205,268	89,915 5,015.5	162,095 157,310

"Percentiles" are averages for all observations in the (P-1, P+1)th percentiles.


Part 1: The effect of bonus on investment


CALENDAR DIFF-IN-DIFFS: BONUS I Intensive Margin


CALENDAR DIFF-IN-DIFFS: BONUS I EXTENSIVE MARGIN

CALENDAR DIFF-IN-DIFFS: BONUS II Intensive Margin

CALENDAR DIFF-IN-DIFFS: BONUS II Extensive Margin

$$f(I_{it}) = \alpha_i + \delta_t + \beta g(z_{N,t}) + \gamma X_{it} + \varepsilon_{it}$$

		LHS Variable is Log(Eligible Investment)							
	All	CF	Pre-2005	Post-2004	Controls	Trends			
z _{N,t}	3.69***	3.78 ^{***}	3.07***	3.02***	3.73 ^{***}	4.69 ^{***}			
	(0.53)	(0.57)	(0.69)	(0.81)	(0.70)	(0.62)			
Observations	735341	580422	514035	221306	585914	722262			
Clusters (Firms)	128001	100883	109678	63699	107985	124962			
R ²	0.71	0.74	0.73	0.80	0.72	0.71			
		LHS Variable is Log(Odds Ratio)							
z _{N,t}	3.79 ^{**}	3.87**	3.12	3.59**	3.99*	4.00 ^{***}			
	(1.24)	(1.21)	(2.00)	(1.14)	(1.69)	(1.13)			
Observations	803659	641173	556011	247648	643913	803659			
Clusters (Industries)	314	314	314	274	277	314			
R ²	0.87	0.88	0.88	0.93	0.90	0.90			
		LHS Variat	ole is Eligible I	nvestment/Lag	ged Capital				
$\frac{1-t_{c}z}{1-t_{c}}$	-1.60***	-1.53***	-2.00***	-1.42***	-2.27***	-1.50***			
	(0.096)	(0.095)	(0.16)	(0.13)	(0.14)	(0.10)			
Observations	637243	633598	426214	211029	510653	631295			
Clusters (Firms)	103890	103220	87939	57343	90145	103565			
R ²	0.43	0.43	0.48	0.54	0.45	0.44			

All regressions include firm and year effects. Controls: cash flow in (2); 4-digit Q, quartics in sales, assets, profit margin, age in (5); 2-digit NAICS $\times t^2$ in (6).

$$f(I_{it}) = \alpha_i + \delta_t + \beta g(z_{N,t}) + \gamma X_{it} + \varepsilon_{it}$$

		LHS Variable is Log(Eligible Investment)							
	All	CF	Pre-2005	Post-2004	Controls	Trends			
z _{N,t}	3.69***	3.78 ^{***}	3.07***	3.02***	3.73 ^{***}	4.69***			
	(0.53)	(0.57)	(0.69)	(0.81)	(0.70)	(0.62)			
Observations	735341	580422	514035	221306	585914	722262			
Clusters (Firms)	128001	100883	109678	63699	107985	124962			
R ²	0.71	0.74	0.73	0.80	0.72	0.71			
		LHS Variable is Log(Odds Ratio)							
$z_{N,t}$	3.79**	3.87**	3.12	3.59**	3.99*	4.00 ^{***}			
	(1.24)	(1.21)	(2.00)	(1.14)	(1.69)	(1.13)			
Observations	803659	641173	556011	247648	643913	803659			
Clusters (Industries)	314	314	314	274	277	314			
R ²	0.87	0.88	0.88	0.93	0.90	0.90			
		LHS Variat	ole is Eligible I	nvestment/Lag	ged Capital				
$\frac{1-t_{c}z}{1-t_{c}}$	-1.60***	-1.53***	-2.00***	-1.42***	-2.27***	-1.50***			
	(0.096)	(0.095)	(0.16)	(0.13)	(0.14)	(0.10)			
Observations	637243	633598	426214	211029	510653	631295			
Clusters (Firms)	103890	103220	87939	57343	90145	103565			
R ²	0.43	0.43	0.48	0.54	0.45	0.44			

All regressions include firm and year effects. Controls: cash flow in (2); 4-digit Q, quartics in sales, assets, profit margin, age in (5); 2-digit NAICS $\times t^2$ in (6).

$$f(I_{it}) = \alpha_i + \delta_t + \beta g(z_{N,t}) + \gamma X_{it} + \varepsilon_{it}$$

	LHS Variable is Log(Eligible Investment)					
	All	CF	Pre-2005	Post-2004	Controls	Trends
z _{N,t}	3.69***	3.78 ^{***}	3.07***	3.02***	3.73 ^{***}	4.69***
	(0.53)	(0.57)	(0.69)	(0.81)	(0.70)	(0.62)
Observations	735341	580422	514035	221306	585914	722262
Clusters (Firms)	128001	100883	109678	63699	107985	124962
R ²	0.71	0.74	0.73	0.80	0.72	0.71
	LHS Variable is Log(Odds Ratio)					
z _{N,t}	3.79 ^{**}	3.87 ^{**}	3.12	3.59**	3.99*	4.00 ^{***}
	(1.24)	(1.21)	(2.00)	(1.14)	(1.69)	(1.13)
Observations	803659	641173	556011	247648	643913	803659
Clusters (Industries)	314	314	314	274	277	314
R ²	0.87	0.88	0.88	0.93	0.90	0.90
	LHS Variable is Eligible Investment/Lagged Capital					
$\frac{1-t_{c}z}{1-t_{c}}$	-1.60***	-1.53***	-2.00***	-1.42***	-2.27***	-1.50***
	(0.096)	(0.095)	(0.16)	(0.13)	(0.14)	(0.10)
Observations	637243	633598	426214	211029	510653	631295
Clusters (Firms)	103890	103220	87939	57343	90145	103565
R ²	0.43	0.43	0.48	0.54	0.45	0.44

All regressions include firm and year effects. Controls: cash flow in (2); 4-digit Q, quartics in sales, assets, profit margin, age in (5); 2-digit NAICS $\times t^2$ in (6).

$$f(I_{it}) = \alpha_i + \delta_t + \beta g(z_{N,t}) + \gamma X_{it} + \varepsilon_{it}$$

		LHS Variable is Log(Eligible Investment)									
	All	CF	Pre-2005	Post-2004	Controls	Trends					
z _{N,t}	3.69***	3.78 ^{***}	3.07***	3.02***	3.73 ^{***}	4.69 ^{***}					
	(0.53)	(0.57)	(0.69)	(0.81)	(0.70)	(0.62)					
Observations	735341	580422	514035	221306	585914	722262					
Clusters (Firms)	128001	100883	109678	63699	107985	124962					
R ²	0.71	0.74	0.73	0.80	0.72	0.71					
	LHS Variable is Log(Odds Ratio)										
z _{N,t}	3.79 ^{**}	3.87**	3.12	3.59**	3.99*	4.00 ^{***}					
	(1.24)	(1.21)	(2.00)	(1.14)	(1.69)	(1.13)					
Observations	803659	641173	556011	247648	643913	803659					
Clusters (Industries)	314	314	314	274	277	314					
R ²	0.87	0.88	0.88	0.93	0.90	0.90					
		LHS Variat	ole is Eligible I	nvestment/Lag	ged Capital						
$\frac{1-t_{c}z}{1-t_{c}}$	-1.60***	-1.53***	-2.00***	-1.42***	-2.27***	-1.50***					
	(0.096)	(0.095)	(0.16)	(0.13)	(0.14)	(0.10)					
Observations	637243	633598	426214	211029	510653	631295					
Clusters (Firms)	103890	103220	87939	57343	90145	103565					
R ²	0.43	0.43	0.48	0.54	0.45	0.44					

All regressions include firm and year effects. Controls: cash flow in (2); 4-digit Q, quartics in sales, assets, profit margin, age in (5); 2-digit NAICS $\times t^2$ in (6).

$$f(I_{it}) = \alpha_i + \delta_t + \beta g(z_{N,t}) + \gamma X_{it} + \varepsilon_{it}$$

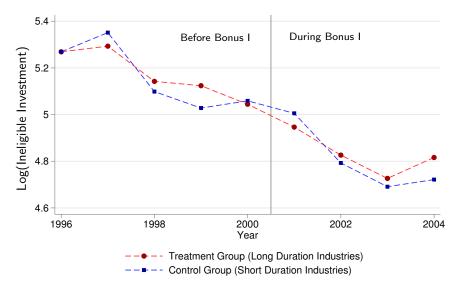
		LHS	Variable is Log	(Eligible Invest	ment)				
	All	CF	Pre-2005	Post-2004	Controls	Trends			
<i>z_{N,t}</i>	3.69***	3.78***	3.07 ^{***}	3.02***	3.73 ^{***}	4.69 ^{***}			
	(0.53)	(0.57)	(0.69)	(0.81)	(0.70)	(0.62)			
Observations	735341	580422	514035	221306	585914	722262			
Clusters (Firms)	128001	100883	109678	63699	107985	124962			
R ²	0.71	0.74	0.73	0.80	0.72	0.71			
		LHS Variable is Log(Odds Ratio)							
z _{N,t}	3.79**	3.87**	3.12	3.59**	3.99*	4.00 ^{***}			
	(1.24)	(1.21)	(2.00)	(1.14)	(1.69)	(1.13)			
Observations	803659	641173	556011	247648	643913	803659			
Clusters (Industries)	314	314	314	274	277	314			
R ²	0.87	0.88	0.88	0.93	0.90	0.90			
		LHS Variat	ole is Eligible I	nvestment/Lag	ged Capital				
$\frac{1-t_c z}{1-t_c}$	-1.60***	-1.53***	-2.00***	-1.42***	-2.27***	-1.50***			
	(0.096)	(0.095)	(0.16)	(0.13)	(0.14)	(0.10)			
Observations	637243	633598	426214	211029	510653	631295			
Clusters (Firms)	103890	103220	87939	57343	90145	103565			
R ²	0.43	0.43	0.48	0.54	0.45	0.44			

All regressions include firm and year effects. Controls: cash flow in (2); 4-digit Q, quartics in sales, assets, profit margin, age in (5); 2-digit NAICS $\times t^2$ in (6).

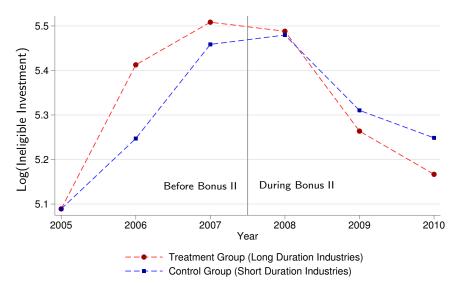
ROBUSTNESS AND IDENTIFICATION

$1. \ {\sf Research} \ {\sf design}$

- Slow moving technology \times rule changes, well-measured
- Instrument "close" to the outcome
- Two separate episodes, separate recessions, same effect size


Parallel Trends
 Placebo Test
 Industry Controls
 Triple Diff
 Firm Controls
 Other DVs

ROBUSTNESS AND IDENTIFICATION


- 1. Research design
- 2. Industry omitted variables
 - Parallel trends pictures
 - Placebo test with structures (ineligible) investment
 - Evidence of industry cyclicality goes other way (Dew-Becker, 2011)
 - Industry controls: industry Q; 2-digit industry-by-t², 2-digit industry-by-GDP, 2-digit industry-year FE
 - Difference-in-difference-in-differences (DDD) test using regional variation in policy salience/state coordination
 - Heterogeneity analysis (in a few slides)

▶ Parallel Trends ▶ Placebo Test ▶ Industry Controls ▶ Triple Diff ▶ Firm Controls ▶ Other DVs

CALENDAR DIFF-IN-DIFFS: BONUS I Placebo Test

CALENDAR DIFF-IN-DIFFS: BONUS I Placebo Test

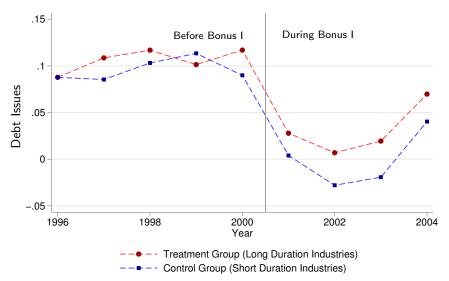
ROBUSTNESS AND IDENTIFICATION

1. Research design

2. Industry omitted variables

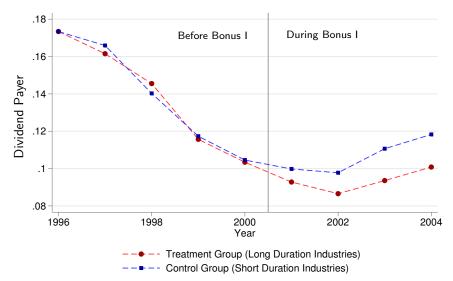
- Parallel trends pictures
- Placebo test with structures (ineligible) investment
- Evidence of industry cyclicality goes other way (Dew-Becker, 2011)
- Industry controls: industry Q; 2-digit industry-by-t², 2-digit industry-by-GDP, 2-digit industry-year FE
- Difference-in-difference-in-differences (DDD) test using regional variation in policy salience/state coordination
- Heterogeneity analysis (in a few slides)

ROBUSTNESS AND IDENTIFICATION


 $1. \ {\sf Research} \ {\sf design}$

2. Industry omitted variables

- 3. Firm-level omitted variables and data issues
 - Alternative outcome variables: $\log(\text{Odds})$, I/K, net investment $(\Delta \log(K))$, bonus take-up, **debt issues**, **dividends**, payroll
 - Limited compliance concerns
 - Firm-level controls: cash flow; ten-piece splines in age, profit margin, sales, assets, lagged sales growth
- Parallel Trends
 Placebo Test
 Industry Controls
 Triple Diff
 Firm Controls
 Other DVs


CALENDAR DIFF-IN-DIFFS: BONUS I

FLOW OF FUNDS: NET BORROWING

CALENDAR DIFF-IN-DIFFS: BONUS I

FLOW OF FUNDS: PAYOUTS

ROBUSTNESS AND IDENTIFICATION

 $1. \ {\sf Research} \ {\sf design}$

2. Industry omitted variables

- 3. Firm-level omitted variables and data issues
 - Alternative outcome variables: log(Odds), *I/K*, net investment (Δ log(K)), bonus take-up, debt issues, dividends, payroll
 - Limited compliance concerns
 - Firm-level controls: cash flow; ten-piece splines in age, profit margin, sales, assets, lagged sales growth
- Parallel Trends
 Placebo Test
 Industry Controls
 Triple Diff
 Firm Controls
 Other DVs

ROBUSTNESS AND IDENTIFICATION

- $1. \ {\sf Research} \ {\sf design}$
 - \blacktriangleright Slow moving technology \times rule changes, well-measured
 - Instrument "close" to the outcome
 - Two separate episodes, separate recessions, same effect size
- 2. Industry omitted variables
 - Parallel trends pictures
 - Placebo test with structures (ineligible) investment
 - Evidence of industry cyclicality goes other way (Dew-Becker, 2011)
 - Industry controls: industry Q; 2-digit industry-by-t², 2-digit industry-by-GDP, 2-digit industry-year FE
 - Difference-in-difference-in-differences (DDD) test using regional variation in policy salience/state coordination
 - Heterogeneity analysis (in a few slides)
- 3. Firm-level omitted variables and data issues
 - Alternative outcome variables: log(Odds), *I/K*, net investment (Δ log(K)), bonus take-up, debt issues, dividends, payroll
 - Limited compliance concerns
 - Firm-level controls: cash flow; ten-piece splines in age, profit margin, sales, assets, lagged sales growth

FACT 1: THE EFFECT IS LARGE

Consider a firm buying \$1M of computers.

• Estimates imply 50% bonus increases investment by \$166K.

- Recall PV cash back = 20K, first period cash back = 140K.
- Investment-cash flow sensitivities are less than 0.2.
- ► Cannot be a direct "cash windfall" effect.

FACT 1: THE EFFECT IS LARGE

Consider a firm buying \$1M of computers.

► Estimates imply 50% bonus increases investment by \$166K.

- ► Recall PV cash back = \$20K, first period cash back = \$140K.
- Investment-cash flow sensitivities are less than 0.2.
- ► Cannot be a direct "cash windfall" effect.
- ▶ Equivalent to an interest rate/price elasticity = 7.2

$$(1-\tau)\Pi'(I) = p_I(1+r)(1-\tau z)$$

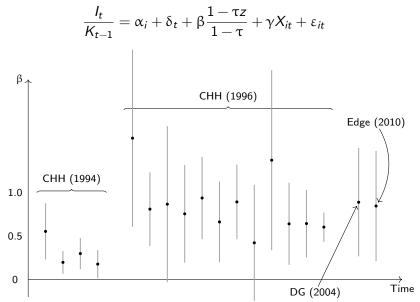
FACT 1: THE EFFECT IS LARGE

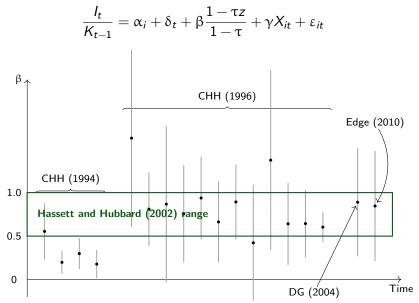
Consider a firm buying \$1M of computers.

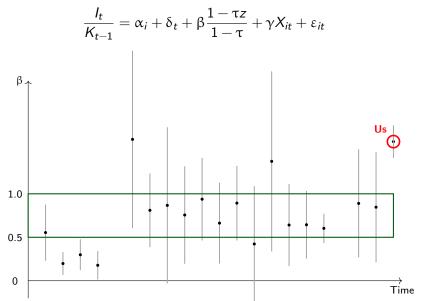
► Estimates imply 50% bonus increases investment by \$166K.

- ► Recall PV cash back = \$20K, first period cash back = \$140K.
- Investment-cash flow sensitivities are less than 0.2.
- Cannot be a direct "cash windfall" effect.
- Equivalent to an interest rate/price elasticity = 7.2

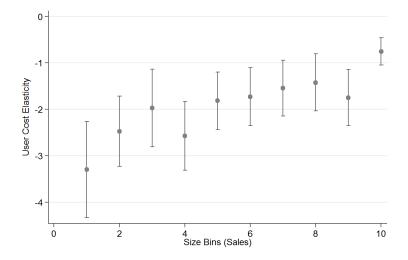
$$(1-\tau)\Pi'(I) = p_I(1+r)(1-\tau z)$$

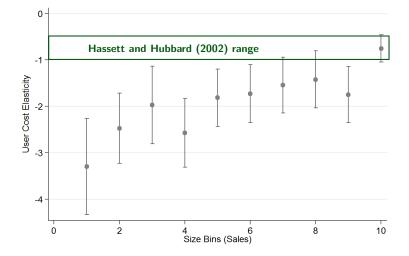

- ► User cost estimates twice the size of Edgerton (2010)
 - ▶ 50% bonus increases I/K by 40 percent (from 0.10 to 0.14).

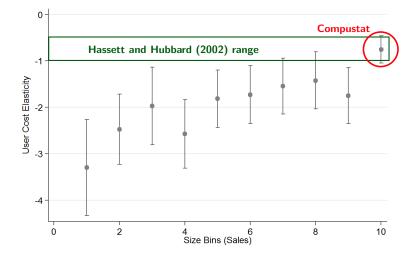

Part 2: Explaining large effects with financial frictions


Story 1: Costly external finance

$$\frac{I_t}{K_{t-1}} = \alpha_i + \beta \underbrace{\left(\frac{Q}{1-\tau} - \frac{1-\tau z}{1-\tau}\right)}_{\text{tax-adjusted }Q} + \varepsilon_{it}$$


$$\frac{I_t}{K_{t-1}} = \alpha_i + \delta_t + \beta \frac{1 - \tau z}{1 - \tau} + \gamma X_{it} + \varepsilon_{it}$$




HETEROGENEOUS EFFECTS BY FIRM SIZE

HETEROGENEOUS EFFECTS BY FIRM SIZE

HETEROGENEOUS EFFECTS BY FIRM SIZE

FACT 2: COSTLY FINANCE AMPLIFICATION

$\log I_{it} =$	$\alpha_i + \delta_t$	$+\beta z_{N,t}$	$+ \varepsilon_{it}$
-----------------	-----------------------	------------------	----------------------

		LHS Variable is Log(Eligible Investment)										
	Sales Di		Div F	Dayer? Lagged Cash			Ever Fail?					
	Small	Big	No	Yes	Low	High	Yes	No				
Z _{N,t}	6.29*** (1.21)	3.22*** (0.76)	5.98*** (0.88)	3.67*** (0.97)	7.21*** (1.38)	2.76** (0.88)	1.78** (0.78)	4.37*** (0.69)				
Test	<i>p</i> =	.030	<i>p</i> =	p = .079		<i>p</i> = .000		p = .012				
Obs Clusters R ²	177620 29618 0.44	255266 29637 0.76	274809 39195 0.69	127523 12543 0.80	176893 45824 0.81	180933 48936 0.76	242267 57157 0.71	493074 70844 0.71				

FACT 2: COSTLY FINANCE AMPLIFICATION

$\log I_{it} =$	$\alpha_i + \delta_t +$	$\beta z_{N,t} + \varepsilon_{it}$
-----------------	-------------------------	------------------------------------

		LHS Variable is Log(Eligible Investment)										
	Sa	les	Div F	iv Payer? Lagged Cash			Ever Fail?					
	Small	Big	No	Yes	Low	High	Yes	No				
Z _{N,t}	6.29*** (1.21)	3.22*** (0.76)	5.98*** (0.88)	3.67*** (0.97)	7.21*** (1.38)	2.76** (0.88)	1.78** (0.78)	4.37*** (0.69)				
Test	<i>p</i> =	.030	<i>p</i> =	.079	<i>p</i> = .000		<i>p</i> = .012					
Obs Clusters R ²	177620 29618 0.44	255266 29637 0.76	274809 39195 0.69	127523 12543 0.80	176893 45824 0.81	180933 48936 0.76	242267 57157 0.71	493074 70844 0.71				

How does the costly finance story work?

- Retiming deductions increases after-tax NPV and reduces today's liquidity needs. Higher discount rate
- Complication: Investment still requires cash up front.
 - Firms must be able to borrow, even if at a large spread.

Part 2: Explaining large effects with financial frictions

Story 2: Managerial myopia

Model Firm Tax Split

Consider a **nontaxable** firm buying \$1M of computers.

Year	0	1	2	3	4	5	Total
Deductions (000s)	0	520	192	115	115	58	1000
Tax Benefit ($\tau = 35\%$)	0	182	67.2	40.3	40.3	20.2	350

Model Firm Tax Split

Consider a **nontaxable** firm buying \$1M of computers.

Normal times nontaxable:

Year	0	1	2	3	4	5	Total	
Deductions (000s) Tax Benefit ($\tau = 35\%$)							1000 350	
Tax benefit $NPV = $ \$307K.								

Bonus times nontaxable (50%):

Year	0	1	2	3	4	5	Total
Deductions (000s) Tax Benefit ($\tau = 35\%$)							
_							

Tax benefit $\underline{NPV} = $317K$.

Model Firm Tax Split

Consider a **nontaxable** firm buying \$1M of computers.

Normal	times	nontaxable:
--------	-------	-------------

Year	0	1	2	3	4	5	Total
Deductions (000s) Tax Benefit ($ au=35\%$)							

Tax benefit today = 0.

Bonus times nontaxable (50%):

Year	0	1	2	3	4	5	Total
Deductions (000s) Tax Benefit ($\tau = 35\%$)							

Tax benefit today = 0.

 $\log(I_{it}) = \alpha_i + \delta_t + \varphi T_{it} + \beta z_{N,t} + \eta T_{it} \times z_{N,t} + \gamma X_{it} + \varepsilon_{it}$

	LHS Variable is Log(Eligible Investment)						
	All	CF	Pre-2005	Post-2004	Controls	Trends	
$\begin{array}{c} {\sf Taxable} \\ \times \ {\it z}_{N,t} \end{array}$	3.83*** (0.79)	3.08*** (0.93)	1.95* (0.92)	6.43*** (1.46)	4.32*** (0.96)	4.15*** (0.82)	
z _{N,t}	-0.15 (0.90)	0.60 (1.05)	0.38 (1.06)	-3.03* (1.55)	-0.69 (1.15)	0.88 (0.94)	
$\overset{\text{Medium LCF}}{\times z_{N,t}}$							
$\begin{array}{l} \text{High LCF} \\ \times \ z_{N,t} \end{array}$							
Observations Clusters (Firms) R ²	735341 128001 0.71	580422 100883 0.74	514035 109678 0.74	221306 63699 0.80	585914 107985 0.73	722262 124962 0.72	

 $T_{it} = 1 \iff$ first dollar of depreciation deduction affects taxes this year

 $\log(I_{it}) = \alpha_i + \delta_t + \varphi T_{it} + \beta z_{N,t} + \eta T_{it} \times z_{N,t} + \gamma X_{it} + \varepsilon_{it}$

	LHS Variable is Log(Eligible Investment)						
	All	CF	Pre-2005	Post-2004	Controls	Trends	
$\begin{array}{c} Taxable \\ \times \ \mathbf{z}_{N,t} \end{array}$	3.83*** (0.79)	3.08*** (0.93)	1.95* (0.92)	6.43*** (1.46)	4.32*** (0.96)	4.15*** (0.82)	
z _{N,t}	-0.15 (0.90)	0.60 (1.05)	0.38 (1.06)	-3.03* (1.55)	-0.69 (1.15)	0.88 (0.94)	
$\stackrel{\rm Medium \ LCF}{\times \ z_{N,t}}$							
$\stackrel{High LCF}{\times z_{N,t}}$							
Observations Clusters (Firms) R ²	735341 128001 0.71	580422 100883 0.74	514035 109678 0.74	221306 63699 0.80	585914 107985 0.73	722262 124962 0.72	

 $T_{it} = 1 \iff$ first dollar of depreciation deduction affects taxes this year

 $\log(I_{it}) = \alpha_i + \delta_t + \varphi T_{it} + \beta z_{N,t} + \eta T_{it} \times z_{N,t} + \gamma X_{it} + \varepsilon_{it}$

Taxable 3.83^{***} 3.08^{***} 1.95^{*} 6.43^{***} 4.32^{***} 4.15^{***} $\times z_{N,t}$ (0.79) (0.93) (0.92) (1.46) (0.96) (0.96) $z_{N,t}$ -0.15 0.60 0.38 -3.03* -0.69 0. $z_{N,t}$ (0.90) (1.05) (1.06) (1.55) (1.15) (0.90) Medium LCF $\times z_{N,t}$ $\times z_{N,t}$ $\times z_{N,t}$ $\times z_{N,t}$ $\times z_{N,t}$ $\times z_{N,t}$		LHS Variable is Log(Eligible Investment)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		All	CF	Pre-2005	Post-2004	Controls	Trends	
N,t (0.90) (1.05) (1.06) (1.55) (1.15) (0.00) Medium LCF $\times z_{N,t}$ High LCF $\times z_{N,t}$ $Z_{N,t}$				4.15*** (0.82)				
$ \begin{array}{c} \times z_{N,t} \\ \text{High LCF} \\ \times z_{N,t} \end{array} $	z _{N,t}						0.88 (0.94)	
$\times z_{N,t}$								
	0							
Clusters (Firms) 128001 100883 109678 63699 107985 124	Clusters (Firms)		100883	109678	63699	107985	722262 124962 0.72	

 $T_{it} = 1 \iff$ first dollar of depreciation deduction affects taxes this year

 $\log(I_{it}) = \alpha_i + \delta_t + \varphi T_{it} + \beta z_{N,t} + \eta T_{it} \times z_{N,t} + \gamma X_{it} + \varepsilon_{it}$

	LHS Variable is Log(Eligible Investment)							
	All	CF	Pre-2005	Post-2004	Controls	Trends	LCF	
$\begin{array}{c} Taxable \\ \times \ \mathbf{z}_{N,t} \end{array}$	3.83*** (0.79)	3.08*** (0.93)	1.95* (0.92)	6.43*** (1.46)	4.32*** (0.96)	4.15*** (0.82)		
$z_{N,t}$	-0.15 (0.90)	0.60 (1.05)	0.38 (1.06)	-3.03* (1.55)	-0.69 (1.15)	0.88 (0.94)	5.68 ^{***} (1.70)	
$\begin{array}{l} {\sf Medium\ LCF}\\ \times \ {\it z}_{N,t} \end{array}$							-2.56 (1.46)	
$\begin{array}{l} \text{High LCF} \\ \times \ {}^{z_{N,t}} \end{array}$							-3.70* (1.55)	
Observations Clusters (Firms) R ²	735341 128001 0.71	580422 100883 0.74	514035 109678 0.74	221306 63699 0.80	585914 107985 0.73	722262 124962 0.72	119628 40282 0.84	

Concern: Poor growth opportunities for nontaxable firms

	LHS Variable is Log(Eligible Investment)							
	All	CF	Pre-2005	Post-2004	Controls	Trends	LCF	
Taxable $\times z_{N,t}$	3.83 ^{***} (0.79)	3.08 ^{***} (0.93)	1.95* (0.92)	6.43 ^{***} (1.46)	4.32*** (0.96)	4.15 ^{***} (0.82)		
<i>z</i> _{<i>N</i>,<i>t</i>}	-0.15 (0.90)	0.60 (1.05)	0.38 (1.06)	-3.03* (1.55)	-0.69 (1.15)	0.88 (0.94)	5.68 ^{***} (1.70)	
$\overset{\text{Medium LCF}}{\times z_{N,t}}$							-2.56 (1.46)	
$\begin{array}{l} {\sf High \ LCF} \\ \times \ {\it z_{N,t}} \end{array}$							-3.70* (1.55)	
Observations Clusters (Firms) R ²	735341 128001 0.71	580422 100883 0.74	514035 109678 0.74	221306 63699 0.80	585914 107985 0.73	722262 124962 0.72	119628 40282 0.84	

How does the myopia story work?

- \blacktriangleright Firms ignore future tax effects. \implies Higher discount rate
- **Complication**: Investment is a forward-looking decision.
 - Firms must use different accounts for investment decisions and tax implications.
- Results inconsistent w/simple costly finance story.
 - Firms ignore future constraints.

BUNCHING EMPIRICAL DESIGN

1. Section 179 allows firms to **expense** equipment up to a limit and **ignore depreciation schedule**.

$$\theta, z = 1$$
 for $I_t \leq \text{Kink}_t$

2. Each year, there is a maximum deduction.

$$z < 1$$
 for $I_t > Kink_t$

3. From 1993 to 2009, the kink went from \$17.5K to \$250K.

BUNCHING EMPIRICAL DESIGN

Consider a firm buying \$50K of computers in 2005.

Without Section 179:

Year	0	1	2	3	4	5	Total
Deductions	10	16	9.6	5.75	5.75	2.9	50
$z_5(0)$							0.890

With Section 179:

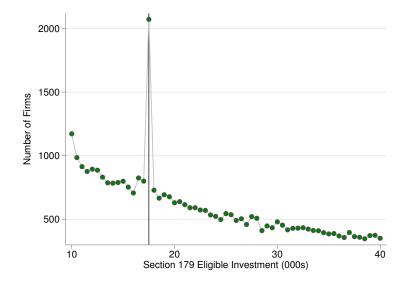
Year	0	1	2	3	4	5	Total
Deductions $z_5(1)$	50	0	0	0	0	0	50 1.0

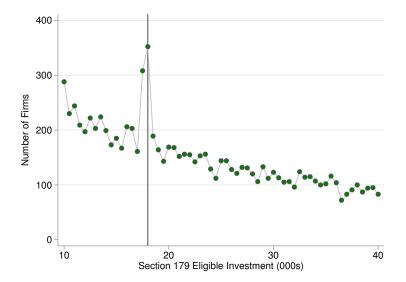
BUNCHING EMPIRICAL DESIGN

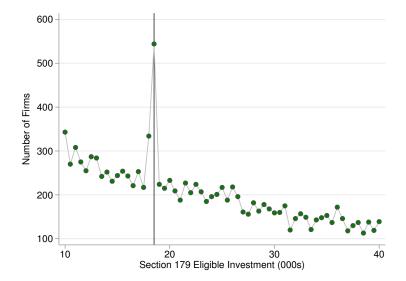
1. Section 179 allows firms to **expense** equipment up to a limit and **ignore depreciation schedule**.

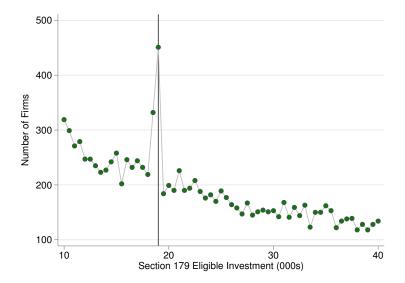
$$\theta, z = 1$$
 for $I_t \leq \text{Kink}_t$

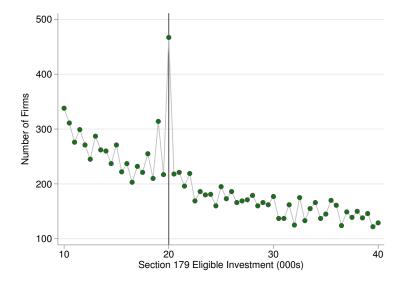
2. Each year, there is a maximum deduction.

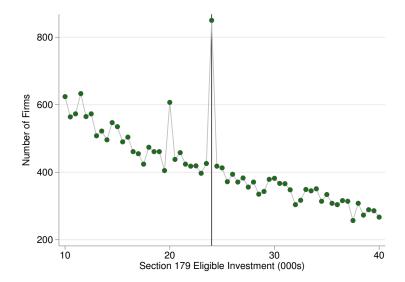

$$z < 1$$
 for $I_t > Kink_t$

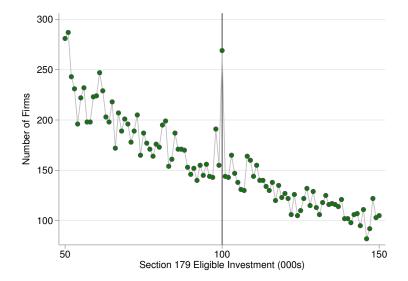

3. From 1993 to 2009, the kink went from \$17.5K to \$250K.

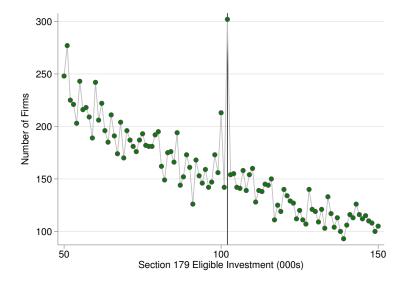

Empirical design:

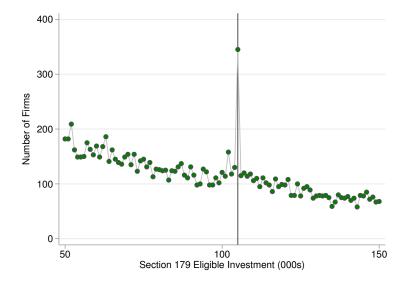

- $1. \ \mbox{Cut-off}$ induces cross sectional variation at the kink
- 2. Bunching around this cut-off reveals depreciation savvy


BUNCHING IN 1993-96

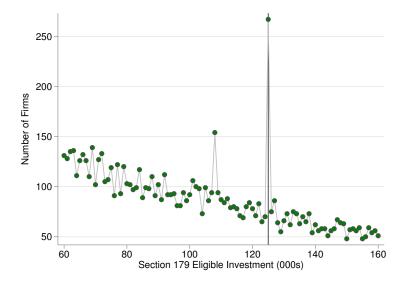


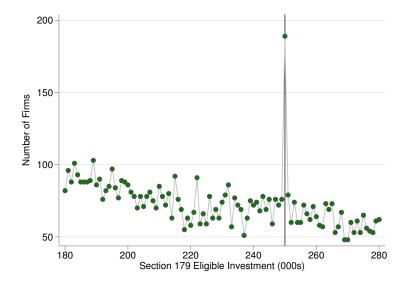


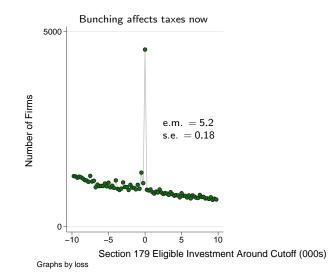


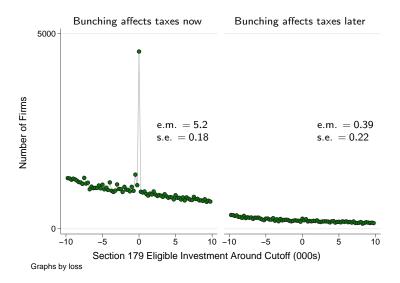


Bunching in 2001-02

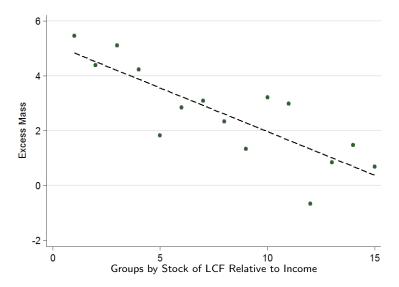







BUNCHING IN 2008-09

FACT 3: FIRMS IGNORE FUTURE TAX BENEFITS



FACT 3: FIRMS IGNORE FUTURE TAX BENEFITS

BUNCHING BY TAX SHIELDS

BREAKDOWN BY LCF STOCK (EXCLUDES CURRENT YEAR LOSS FIRMS)

Advertisers Ignore Future Tax Benefits

CREST CAPITAL	Equipment Financing	Vehicle Financing	Software Financing	Our Process	Vendor Programs	Contact Us
					, i	CTION 179.0RG
			2014 Se Deducti			
		Enter Cost o	f Equipment	Here	\$ 1000	
					Show My	Savings 🕥
		S	Section 179 [Deduction:	\$	\$1,000.00
			epreciation (tly not available		\$	\$0.00
		Normal	1st Year De	preciation:	\$	\$0.00
		Tota	al First Year [Deduction:	\$	\$1,000.00
			vings on your (assuming a 359		\$	\$350.00
		Lowere	d Cost of Ec _{(after T}	uipment: ax Savings)	\$	\$650.00
					Email My	Options 🔊
	to tr	ur business. This pa transactions deem ansaction. Please co	its a potential tax scer age and calculator are ad to reflect a purcha nsult your tax advisor re for your business.	not tax advice. The se of the equipment	indicated tax trea at or a capitalized li tax ramifications of	ment applies only ase purchase

Advertisers Ignore Future Tax Benefits

CREST CAPITAL	Equipment Financing	Vehicle Financing	Software Financing	Our Process	Vendor Programs	Contact Us
			2014 Se Deducti			TION 179. 086
		Enter Cost o	f Equipment	Here	\$ 1000 Show My S	avings 🕥
		S	Section 179 [Deduction:	\$\$	1,000.00
			epreciation [itly not available		\$	\$0.00
		Normal	1st Year De	preciation:	\$	\$0.00
		Tota	al First Year (Deduction:	\$\$	1,000.00
			vings on your (assuming a 359		\$	\$350.00
		Lowere	d Cost of Ec _{(after T}	uipment: ax Savings)	\$	650.00
					Email My C	ptions 🔊
	to tr	ur business. This pa transactions deem ansaction. Please co	age and calculator are ed to reflect a purcha	not tax advice. The se of the equipment	al assumptions that n indicated tax treatm it or a capitalized leas ax ramifications of ac Pewrete	ent applies only e purchase quiring

Savings computed relative to zero deduction benchmark

Advertisers Ignore Future Tax Benefits

CREST CAPITAL Fin	ancing Financing Financing	Process	Programs	Us
quipment financier	2014 Sec Tax Deduction	tion 179		DN 179.org
	Enter Cost of Equipment He		5 1000 Show My Sav	ings 🕥
	Section 179 De	duction: ç	; \$1,	00.00
	Bonus Depreciation De (currently not available thi		\$	\$0.00
	Normal 1st Year Depre	eciation: ្	\$	\$0.00
	Total First Year De	duction: ş	\$ \$1,	000.00
	Cash Savings on your Pi (assuming a 35% ta		\$\$	350.00
	Lowered Cost of Equi (after Tax	ipment: Savings)	\$ \$6	50.00
			mail My Opt	tions 🔊

Savings computed relative to zero deduction benchmark

Synthesis

- $1. \ {\sf Baseline \ Effect}$
 - Policy Setting
 - Research Design
 - Data
 - Findings
- 2. Financial Frictions
 - ► Costly Finance
 - Managerial Myopia

Synthesis

1. The response to the tax changes we study is large.

- Policy Setting
- Research Design
- Data
- Findings

2. It is amplified by costly external finance, but only when the policy immediately affects cash flow.

- ► Costly Finance
- Managerial Myopia

Bottom line: Results demand a major role for financial frictions; understanding financial frictions requires looking past Compustat.

Synthesis

- $1. \ {\sf Baseline \ Effect}$
 - Policy Setting
 - Research Design
 - Data
 - Findings
- 2. Financial Frictions
 - ► Costly Finance
 - Managerial Myopia
- 3. Macro
 - Substitution
 - Aggregation

Part 3: Macroeconomic implications

Substitution and aggregation

Aggregate estimates

Step 1. Account for size heterogeneity

- 1. Top vigintile = 62% of investment
- 2. $\beta = 3.69$ vs. $\beta_W = 2.89$ vs. $\beta_{\text{Top 5\%}} = 2.27$
- 3. Implied effect of Bonus II falls from 28.9% to 22.7%
- \implies BII increases investment by \$77.5B per year within sample

Aggregate estimates

Step 1. Account for size heterogeneity

 \implies BII increases investment by \$77.5B per year within sample

Step 2. Map estimates out of sample

- 1. Aggregate investment in sample = 44% of eligible investment
- 2. Exotic forms and small corporations = 22%
- 3. Partnerships = 20%
- 4. Sole proprietorships = 13%
- 5. Account for size diffs, take-up, and Section 179
- 6. Implied effect of Bonus II is 16.9%
- \implies BII increases investment by \$135B per year in aggregate

Aggregate estimates

Step 1. Account for size heterogeneity

 \implies BII increases investment by \$77.5B per year within sample

Step 2. Map estimates out of sample

 \implies BII increases investment by \$135B per year in aggregate

Step 3. Follow Mian and Sufi (2012) to derive lower bound

- 1. Produce estimates relative to lowest exposure group
- In BII, bottom 5% sees a 6.5 cent increase in z; top 5% sees a 12.4 cent
- 3. Apply elasticity from Step 1 to Δz for each group relative to bottom 5%
- \implies BII increase \geq \$32.1B in sample and \geq \$55.9B in aggregate

1. Do firms buy more equipment while leasing less?

$$Y_{it} = \alpha_i + \delta_t + \beta z_{N,t} + \varepsilon_{it}$$

		LHS Variable is ∆Log(Rent Payments)						
	All	CF	Pre-2005	Post-2004	Controls	Trends		
z _{N,t}	0.77**	0.68**	1.18**	0.45	0.95**	0.66*		
	(0.26)	(0.33)	(0.42)	(0.37)	(0.37)	(0.33)		
Obs	573,638	569,529	379,403	194,235	466,885	568,442		
Firms	98,260	97,494	82,643	53,907	85,561	97,932		
R ²	0.18	0.17	0.21	0.28	0.19	0.18		

All regressions include firm and year effects.

- 1. Do firms buy more equipment while **leasing less**? No.
- $2. \ \mbox{Do firms buy more equipment while hiring less labor?}$

$$Y_{it} = \alpha_i + \delta_t + \beta z_{N,t} + \varepsilon_{it}$$

	LHS Variable is $\Delta Log(Wage Compensation)$							
	All	CF	Pre-2005	Post-2004	Controls	Trends		
z _{N,t}	1.48***	1.31***	1.71***	1.43***	2.22***	1.52***		
	(0.21)	(0.20)	(0.37)	(0.27)	(0.27)	(0.24)		
Obs	624,352	620,185	418,625	205,727	503,671	618,548		
Firms	101,871	101,100	86,403	55,832	88,771	101,552		
R ²	0.23	0.23	0.28	0.35	0.25	0.24		

All regressions include firm and year effects.

- 1. Do firms buy more equipment while **leasing less**? No.
- 2. Do firms buy more equipment while **hiring less labor**? **No.**
- 3. Do firms buy more equipment now while buying less later?

	LHS	Variable is	Log(Investn	nent)
	All	CF	Controls	Trends
z _{N,t}	4.15***	4.03***	5.13***	4.51***
	(0.62)	(0.62)	(0.81)	(0.70)
$z_{N,t-2}$	-1.10	-1.15	-1.62	-2.18**
	(0.70)	(0.70)	(0.90)	(0.72)
Obs	476,459	474,478	382,653	472,134
Firms	84,699	84,300	73,271	84,369
R ²	0.76	0.76	0.77	0.76

$Y_{it} = \alpha_i + \delta_t + \beta z_N$	$J_{,t} + \varepsilon_{it}$
--	-----------------------------

All regressions include firm and year effects.

1. Do firms buy more equipment while leasing less? No.

2. Do firms buy more equipment while **hiring less labor**? **No.**

3. Do firms buy more equipment now while **buying less later**? **Mostly not.**

NEXT STEPS

Policy implications:

- Importance of immediate, targeted policies
- Policies targeting financial constraints (e.g., loans)?
- Business investment vs. consumer durables
- Interaction with corporate tax rate, loss carrybacks

NEXT STEPS

Policy implications:

- Importance of immediate, targeted policies
- Policies targeting financial constraints (e.g., loans)?
- Business investment vs. consumer durables
- Interaction with corporate tax rate, loss carrybacks

Future research:

- Deeper study of credit mechanism
- Employment effects of these policies
- Financial frictions as fixed costs
- Real effects of corporate tax planning
- Short termism vs. salience vs. agency