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Arrested Development: Theory and Evidence of
Supply-Side Speculation in the Housing Market

CHARLES G. NATHANSON and ERIC ZWICK∗

ABSTRACT

This paper studies the role of disagreement in amplifying housing cycles. Speculation
is easier in the land market than in the housing market due to frictions that make
renting less efficient than owner-occupancy. As a result, undeveloped land facilitates
construction and intensifies the speculation that causes booms and busts in house
prices. This observation challenges the standard intuition that in cities where con-
struction is easier, house price booms are smaller. It can also explain why the largest
house price booms in the United States between 2000 and 2006 occurred in areas
with elastic housing supply.

ASSET PRICES GO THROUGH PERIODS of sustained price increases, followed by
busts. To explain these episodes, economists have developed theories based on
disagreement, speculation, and strategic trading. This literature focuses on the
behavior of asset prices in stock markets. But do these ideas explain housing
markets as well? Like any other financial asset, housing is a traded, durable
claim on uncertain dividends. Moreover, an enduring feature of housing mar-
kets is booms and busts in prices that coincide with widespread disagreement
about fundamentals (Shiller (2005)), and there is a long history of investors
using real estate to speculate about the economy (Kindleberger (1978), Glaeser
(2013)).

In this paper, we incorporate disagreement into a housing model to exam-
ine whether the finding that disagreement raises stock prices generalizes to
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the housing market.1 Housing differs from the typical asset studied in finance
in two fundamental ways. First, the underlying real assets in many financial
models are in fixed supply.2 In contrast, elastic supply is central to housing mar-
kets, as firms respond to high prices with new construction (Gyourko (2009)).
Second, while the typical financial asset pays cash dividends, the dividend paid
by housing is the flow utility enjoyed by end users. This flow utility has differ-
ent values for different people and is not perfectly transferable, leading many
people to prefer owning to renting (Henderson and Ioannides (1983)).

We study a two-period model of a housing market with two classes of agents.
Potential residents receive heterogeneous utility from consuming housing that
accrues only when they own their houses. Developers supply housing in a com-
petitive market, buying land at market prices, and converting it into housing
for a constant resource cost. As in Saiz (2010), the amount of developable land
is fixed due to geographic and regulatory constraints. At t = 0, there is an
initial number of potential residents N0, and at t = 1, the number of potential
residents grows to N1 = eμx N0, where x is a positive shock. The larger is N1, the
greater are the price of land and housing at t = 1. At t = 0, all agents observe
the shock x, but they “agree to disagree” about μ. In this context, we define a
“house price boom” as the reaction of the house price at t = 0 to the shock x.

Our results characterize how the size of the house price boom varies with
N0. When N0 is very small, there is no house price boom because the price
of land remains equal to zero. When N0 is very large, initial housing demand
can be so strong that, at t = 0, all space is held by homeowners. In this case,
the house price at t = 0 reflects both heterogeneous expectations about the
t = 1 price and homeowners’ flow utility for housing. The latter mitigates the
impact of the former. Finally, when N0 is intermediate, some land at t = 0 is
left unoccupied by homeowners and is held by developers. These supply-side
speculators hold land only when they have optimistic beliefs about μ, and it is
these optimistic beliefs that drive prices. Consequently, prices at t = 0 are most
sensitive to disagreement and optimism for cities with an intermediate level of
development. For the same reason, the house price at t = 0 is most sensitive to
x, that is, booms are larger, in these cities.

Stated in terms of available land in the city, the house price boom is largest
for intermediate values of initial land supply. This nonmonotonicity between
the house price boom and supply contrasts with prior work on disagreement—
which does not consider the unique aspects of housing—and prior work on

1 Beginning with Miller (1977), a large literature uses models of disagreement to explain asset
pricing patterns in the stock market. Hong and Stein (2007) survey this literature, which includes
Harrison and Kreps (1978), Morris (1996), Diether, Malloy, and Scherbina (2002), Scheinkman
and Xiong (2003), Hong, Scheinkman, and Xiong (2006), and Simsek (2013). Other papers apply
speculative finance models to housing. See, for example, Piazzesi and Schneider (2009), Favara
and Song (2014), Giglio, Maggiori, and Stroebel (2014), and Burnside, Eichenbaum, and Rebelo
(2015). Unlike those papers, our work focuses on housing supply.

2 Although firms can (and do) issue new equity in response to high demand for stock and high
prices (Baker and Wurgler (2002)), many asset pricing models assume that the underlying real
assets of a firm are fixed. See, for instance, Lucas (1978) or Scheinkman and Xiong (2003).



Arrested Development 2589

housing cycles—which does not consider disagreement. Taken separately, each
approach predicts a monotonically declining relationship between a house price
boom and initial land supply (Hong, Scheinkman, and Xiong (2006), Glaeser,
Gyourko, and Saiz (2008), Paciorek (2013)).3 By joining these approaches, we
provide a new insight about housing cycles that neither approach offers alone.

We demonstrate the robustness of this result in several extensions that relax
the model’s assumptions in different ways. First, we consider the case in which
developers can issue equity and investors can short-sell that equity. Second, we
consider an extension in which landlords can speculate in the housing market
and rent housing to pessimistic residents. In a final extension, we generalize the
model to the case in which supply elasticity declines continuously with the level
of initial demand. We also formally show how disagreement reduces welfare
(in the sense of Brunnermeier, Simsek, and Xiong (2014)) by reallocating space
from high-flow-utility pessimists to low-flow-utility optimists and developers.

The model’s core insight helps explain the variation in 2000 to 2006 house
price booms across U.S. cities. As shown by Davidoff (2013), a static supply-
demand framework with a common national demand shock cannot account
for cities in the “sand states” of Arizona, California, Florida, and Nevada that
experienced strong price and quantity growth.4 One possibility is that the de-
mand shocks in these cities were especially large due to local credit conditions,
differences in productivity and amenities, or heightened speculative activity
by homebuyers (Barlevy and Fisher (2011), Davidoff (2013), Gao, Sockin, and
Xiong (2016)). Our model offers an alternative explanation: house prices were
more sensitive to a demand shock in these cities because the cities were at an
intermediate level of development, and market participants disagreed about
future prices.

We offer several pieces of empirical evidence in support of this explanation.
Land price growth from 2000 to 2006 was high and closely correlated with house
price growth across cities, whereas construction cost growth was not. Matching
this fact distinguishes our model from Gao, Sockin, and Xiong (2015), who offer
a theory of nonmonotonic house price booms that is agnostic on the differential
roles of land prices and construction costs. We also document land market
speculation from U.S. public home builders. These firms amassed land far in
excess of their immediate construction needs during the boom, while investors
short-sold home builder stocks more than nearly every other industry. The
model predicts these outcomes for developers in intermediate cities only in the
presence of disagreement.

Although we do not systematically examine land constraints in sand state
cities, the case of Las Vegas offers a stark illustration of our model. Las Vegas
is surrounded by land owned by the federal government, and Congress passed

3 Simsek (2013) predicts that the introduction of new nonredundant financial assets increases
the “speculative variance” of portfolio values, but this result does not apply to our findings because
the price of undeveloped land is perfectly correlated with the price of housing in our equilibrium.

4 Understanding the factors driving these outlier cities is crucial for evaluating research in-
strumenting for price growth with supply elasticity. Davidoff (2016) discusses problems with this
instrument.
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a law in 1998 prohibiting the sale of land outside a development ring depicted
in Figure 1. In 2007, some people believed that the remaining land would be
fully developed by 2017. During the boom, land prices rose from $150,000 to
$700,000 per acre before losing the gains in the bust. In a striking example
of supply-side speculation, a single land development fund, Focus Property
Group, won the majority of the large land parcels auctioned between 2002 and
2005 by the federal government in Las Vegas, obtaining 5% of the undeveloped
land remaining within the barrier.5

The paper proceeds as follows. Section I presents the core model. Sections II
and III characterize equilibrium with agreement and disagreement, respec-
tively. Section IV presents extensions of the core model. Section V analyzes the
2000 to 2006 U.S. housing boom and subsequent bust. Section VI concludes. An
appendix contains all proofs of material in Sections I, II, and III; the Internet
Appendix6 provides proofs of material in Section IV.

I. A Housing Market with Disagreement

A. Housing Supply and Developer Demand

The city we study has a fixed amount of space S. At the beginning of period
0, all of this space exists as undeveloped land that can be used for housing.
Housing and land trade in spot markets each period but cannot be sold short.7

The price of land and housing at t are pl
t and ph

t , respectively.
Developers are private firms endowed with the entire supply of land at the

beginning of period 0. Developers can borrow or lend freely in global capital
markets at an interest rate normalized to zero. In each period, a developer
makes three decisions: how much land to buy or sell, how much housing to
build, and how much housing to sell. Building a unit of housing requires one
unit of land and a resource cost kt. To simplify equations and keep the user
cost of housing constant over time, we set k0 = 2k and k1 = k for some k > 0.8

At t = 1, the owners of each developer receive the proceeds from liquidation.
Each developer maximizes its subjective expectation of its liquidation value.

Denote the holdings of housing, land, and bonds at the beginning of t by Ht, Lt,
and Bt, respectively. Denote the control variables of home sales, land purchases,
and home construction at each t by Hsell

t , Lbuy
t , and Hbuild

t , respectively. At
t = 1, the liquidation value π of a developer is the outcome of the constrained

5 The sources for this paragraph include price data from Applied Analysis, auction records from
the Bureau of Land Management, news reports in the Las Vegas Review Journal and the New York
Times, and land-use information from the Southern Nevada Regional Planning Commission.

6 The Internet Appendix is available in the online version of the article on the Journal of Finance
website.

7 Short-sale constraints in the housing market result from a lack of asset interchangeability.
Although housing is homogeneous in the model, empirical housing markets involve large variation
in characteristics across houses. This variation in characteristics makes it essentially impossible
to cover a short.

8 We abstract from the possibility of overbuilding by allowing developers to build negative
amounts of housing by turning a house into land, thereby recouping kt.



Arrested Development 2591

Figure 1. Long-run development constraints in Las Vegas. This figure comes from
page 51 of the Regional Transportation Commission of Southern Nevada’s Regional Trans-
portation Plan 2013–2035. (Available at http://www.rtcsnv.com/wp-content/uploads/2012/10/Final_
RTP-2013-35-Redetermination-0214131.pdf.) The first three pictures display the Las Vegas
metropolitan area in 1980, 1990, and 2008. The final picture represents the Regional Transporta-
tion Commission’s forecast for 2030. The boundary is the development barrier stipulated by the
Southern Nevada Public Land Management Act. The shaded gray region denotes developed land.
(Color figure can be viewed at wileyonlinelibrary.com)

http://www.rtcsnv.com/wp-content/uploads/2012/10/Final_RTP-2013-35-Redetermination-0214131.pdf
http://www.rtcsnv.com/wp-content/uploads/2012/10/Final_RTP-2013-35-Redetermination-0214131.pdf
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optimization problem

π
(
ph

1, pl
1, H1, L1, B1

) = max
Hsell

1 ,Lbuy
1 ,Hbuild

1

ph
1 Hsell

1 − pl
1Lbuy

1 − kHbuild
1 + B1 (1)

subject to

Hsell
1 ≤ H1 + Hbuild

1 , (2)

Hbuild
1 ≤ L1 + Lbuy

1 . (3)

The actions (Hsell
1 )∗, (Lbuy

1 )∗, and (Hbuild
1 )∗ chosen by the developer maximize

this problem. At t = 0, the developer maximizes its subjective expectation of
this liquidation value:(

Hsell
0

)∗
,
(

Lbuy
0

)∗
,
(

Hbuild
0

)∗
∈ arg max

Hsell
0 ,Lbuy

0 ,Hbuild
0

Eπ
(
ph

1, pl
1, H1, L1, B1

)
(4)

subject to

Hsell
0 ≤ Hbuild

0 , (5)

Hbuild
0 ≤ L0 + Lbuy

0 , (6)

H1 = Hbuild
0 − Hsell

0 , (7)

L1 = L0 + Lbuy
0 − Hbuild

0 , (8)

B1 = ph
0 Hsell

0 − pl
0Lbuy

0 − 2kHbuild
0 . (9)

At t = 0, developers may differ only in their land endowments L0 and their
beliefs about ph

1 and pl
1 (as specified below). The sum of the land endowments

across developers equals S. Developers take prices as given, which is consistent
with evidence in Section V on perfect competition in the home building industry.

B. Individual Housing Demand

Potential residents derive utility from consumption and from owning and
occupying housing. There are two disjoint groups of potential residents: one
arriving at t = 0 and one arriving at t = 1. Upon arrival, each potential resident
decides whether to buy a house. Utility comes from consumption c at t = 1 and
any housing services v received in the period of arrival. Utility is linear and
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separable in housing and consumption: u = c + v if the potential resident owns
a house in the period of her arrival, and u = c otherwise.

A potential resident who buys at t = 0 decides whether to sell her house at t =
1. As with developers, potential residents at t = 0 may borrow in global capital
markets at an interest rate of zero. Denote the control variables capturing
whether to buy or sell a house by Hbuy

t and Hsell
t , each of which equals 0 or 1.

At t = 1, an arriving potential resident chooses(
Hbuy

1

)∗
∈ arg max

Hbuy
1

Hbuy
1

(
v − ph

1

)
(10)

subject to

Hbuy
1 ∈ {0, 1}, (11)

and the utility of potential residents who bought at t = 0 equals

u
(
ph

1, B1, v
) = max

Hsell
1

Hsell
1 ph

1 + B1 + v (12)

subject to

Hsell
1 ∈ {0, 1}, (13)

where the choice (Hsell
1 )∗ maximizes this problem. At t = 0, arriving potential

residents maximize the subjective expectation of their utility:(
Hbuy

0

)∗
∈ arg max

Hbuy
0

Hbuy
0 Eu

(
ph

1, B1, v
)

(14)

subject to

Hbuy
0 ∈ {0, 1} (15)

B1 = −ph
0 Hbuy

0 . (16)

At t = 0, potential residents may differ only in their housing utility v and in
their beliefs about ph

1 (as specified below). At t = 1, arriving potential residents
may differ only in v.

Denote by D(v) the complementary cumulative distribution function of v

among arriving potential residents. This time-invariant function encodes het-
erogeneity in housing flow utility. We make the following assumption about the
functional form of D(v):

ASSUMPTION 1: There exists ε > 0 such that

D(v) =
{

1 if v < k
(k/v)ε if v ≥ k.

(17)
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By Assumption 1, no potential residents have housing utility v less than
k. This restriction implies that all potential residents are willing to purchase
housing at its cost. As a result, no residents buy housing only because of ex-
pected capital gains. In the model, such pure speculators would be classified
as developers.9 Assumption 1 also invokes a constant elasticity of demand for
housing, which allows us to derive simple analytic results.

Our utility specification makes two implicit assumptions about resident be-
havior. First, because utility is separable and linear in c, potential residents
are risk-neutral. As a result, the purchase decisions of potential residents
at t = 0 are not affected by the type of hedging motives studied by Piazzesi,
Schneider, and Tuzel (2007). Second, because potential residents receive utility
from only one house, their housing utility displays diminishing marginal re-
turns. This property leads homeownership to be dispersed among residents in
equilibrium.10

C. Aggregate Demand and Beliefs

Aggregate resident demand for housing depends on the number of potential
residents and the joint distribution of housing utility and beliefs. The number
of arriving potential residents at t equals NtS, where Nt > 0. The growth in Nt
between t = 0 and t = 1 is given by

log(N1/N0) = μtruex, (18)

where x ≥ 0 is a shock and μtrue is some constant. At t = 0, all agents observe
N0 and x. They do not observe μtrue, the data needed to map the information
shock x to the demand growth rate. Agents learn the value of μtrue at t = 1. The
resolution of uncertainty at t = 1 is common knowledge at t = 0.

At t = 0, agents may disagree about the value of μtrue. Agent beliefs at t = 0
are indexed by θ ∈ � ⊂ R. An agent of type θ believes with certainty that
μtrue = μ(θ ), where μ : � → R is a weakly increasing function. When μ(·) is
not constant, beliefs vary across residents, and knowing the beliefs of other
residents does not lead to any Bayesian updating. This “agree-to-disagree” as-
sumption rules out any inference from prices at t = 0. Therefore, for instance,
a developer who holds land in equilibrium can realize that it is the most opti-
mistic developer, but this realization fails to change the developer’s belief.

As argued by Morris (1996), this heterogeneous prior assumption is most
appropriate when investors face an unusual, unexpected situation like the
arrival of the shock we are studying. Housing booms historically accompany
unanticipated events like the settlement of new cities or the discovery of new
resources (Glaeser (2013)). In the case of the U.S. housing boom between 2000

9 We explore the interaction between speculative and fundamental motives in related work
(DeFusco, Nathanson, and Zwick (2016)).

10 This dispersion is partly due to the limitation that potential residents can buy at most one
house. Section IV considers an extension in which potential residents can buy unlimited amounts
of housing and rent it to tenants.
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and 2006, Mian and Sufi (2009) suggest that the shock was the arrival of new
securitization technologies that expanded credit to home buyers, although an
equally valid interpretation would be demographic shifts leading to a secular
increase in housing demand. The shock to housing demand between 2000 and
2006 is x, and μtrue represents the degree to which this shock persists after
2006. Even economists disagreed about μtrue during the boom (Gerardi, Foote,
and Willen (2010)).

Denote by fd and fr the distribution of θ across developers and residents,
respectively. We allow these distributions to differ in order to separately study
the equilibrium effects of developer and resident beliefs. We make two key
assumptions about these distributions:

ASSUMPTION 2: θ and v are independent for potential residents.

ASSUMPTION 3: θmax
j ≡ max supp f j exists for j ∈ {d, r}.

Assumption 2 guarantees that the two sources of heterogeneity among poten-
tial residents at t = 0—their beliefs and their housing utility—are independent
of one another.11 Assumption 3 guarantees the existence of a most optimistic
developer. Given that developers can access unlimited quantities of financing,
an equilibrium would not exist without this regularity condition. We define
μmax

j ≡ μ(θmax
j ) for j ∈ {d, r}.

To study the marginal effects of disagreement on equilibrium, we adopt the
specification

μ(θ ) = μ + zθ, (19)

where μ, z ≥ 0.12 When z = 0, all agents agree that μtrue = μ. The following
assumption guarantees existence in each class of agents of optimists and pes-
simists relative to the agreement benchmark when z > 0:

ASSUMPTION 4:
∫
θ<0 f j(θ )dθ > 0 and

∫
θ>0 f j(θ )dθ > 0 for j ∈ {d, r}.

Given Assumption 4, larger values of z lead to greater variation in beliefs.
The assumption is sufficiently general that an increase to z may also alter the
mean beliefs among each group of agents.

D. Land and Housing Market Equilibrium

In an equilibrium, a city is constrained if all space is used for housing, un-
constrained if some space remains as land and the price of land is zero, and
intermediate if some space remains as land but the price of land is positive.
This classification partitions all equilibrium outcomes and will prove useful for
describing them.

11 Although there exist theories of why consumer beliefs may be driven by preferences (Bénabou
and Tirole (2016)), independence of beliefs and preferences seems like a reasonable starting point.

12 The restriction μ ≥ 0 implies that agents expect a nonnegative growth rate without disagree-
ment and simplifies our analysis by allowing us to focus on the case of a positive shock to the
housing market.
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The land market clears at t if the sum of (Lbuy
t )∗ across developers equals zero,

and the housing market clears at t when the sum of (Hsell
t )∗ across developers

and potential residents equals the sum of (Hbuy
t )∗ across potential residents.

The prices pl
1 and ph

1 constitute an equilibrium when the land and housing
markets clear at t = 1. The following lemma characterizes this equilibrium.

LEMMA 1: Given N1, a unique equilibrium at t = 1 exists and is given by

ph
1 =

{
k if N1 < 1 (unconstrained)
kN1/ε

1 if N1 ≥ 1 (constrained)
(20)

and pl
1 = ph

1 − k.

Denote the prices in this equilibrium by pl
1(N1) and ph

1(N1).
These simple expressions for equilibrium prices depend on the model’s as-

sumptions in the following way. Because construction is reversible, ph
1 = pl

1 + k
and initial conditions such as endowments and the housing stock are irrelevant
for prices. Thus, only N1, the number of arriving potential residents, matters
for prices at t = 1. If N1 < 1, then the available space S exceeds the number
of potential residents who want to buy at ph

1 = k. As a result, land is free and
ph

1 = k. If N1 > 1, then more potential residents want to buy at ph
1 = k than

there is available space, so the price of housing rises. In this case, because the
elasticity of D(·) for v ≥ k is assumed to be ε, the pass-through of more potential
residents to the house price equals 1/ε, giving the formula in Lemma 1.

At t = 0, an agent of type θ believes with certainty that house and land prices
at t = 1 will equal ph

1(eμ(θ)x N0) and pl
1(eμ(θ)x N0), respectively. Given these beliefs,

pl
0 and ph

0 constitute an equilibrium when the land and housing markets clear
at t = 0. The following lemma characterizes this equilibrium.

LEMMA 2: Given N0, x, and z, a unique equilibrium at t = 0 exists, and in this
equilibrium, pl

0 = ph
0 − 2k.

Denote prices in this equilibrium by pl
0(N0, x, z) and ph

0(N0, x, z). Sections II
and III fully characterize these prices in the cases of agreement and disagree-
ment, respectively.

As above, the result that pl
0 = ph

0 − 2k follows from the reversibility of con-
struction. If pl

0 < ph
0 − 2k, then developers would want to buy an infinite amount

of land and build houses to sell; if pl
0 > ph

0 − 2k, developers would want to buy
an infinite amount of housing to revert to land. Markets would not clear in
either case, so neither inequality can hold in equilibrium.

II. Equilibrium with Agreement

In this section, we describe the equilibrium house price at t = 0 under agree-
ment. This special case of the model, in which z = 0, provides the baseline
against which we compare the equilibrium under disagreement, in which z > 0.
Proposition 1 characterizes the equilibrium at t = 0 for land holdings, the price
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of housing, and the effect of the shock x on the price of housing, which we call
the house price boom.

PROPOSITION 1: In equilibrium, when z = 0 developers hold land at t = 0 if and
only if N0 < 1. The house price at t = 0 equals

ph
0(N0, x, 0) =

⎧⎨⎩
2k if N0 ≤ e−μx (unconstrained)
k + keμx/ε N1/ε

0 if e−μx < N0 < 1 (intermediate)
k(1 + eμx/ε)N1/ε

0 if N0 ≥ 1 (constrained)
(21)

and the house price boom

ph
0(N0, x, 0)

ph
0(N0, 0, 0)

− 1 =

⎧⎪⎨⎪⎩
0 if N0 ≤ e−μx (unconstrained)
1
2

(
eμx/ε N1/ε

0 − 1
)

if e−μx < N0 < 1 (intermediate)
1
2 (eμx/ε − 1) if N0 ≥ 1 (constrained)

(22)

weakly increases in N0.

The price at t = 0 consists of two terms: one that reflects the housing utility
for the marginal buyer today, and one that reflects the common expectation of
this marginal utility tomorrow. Using Lemma 1, we may write ph

0(N0, x, 0) =
ph

1(N0) + ph
1(eμx N0). When N0 ≤ e−μx, agents expect that N1 ≤ 1 and ph

1 = k,
leading to a price today of 2k. In the intermediate case in which e−μx < N0 < 1,
land is available today but agents agree it will not be tomorrow. When N0 ≥ 1,
housing is constrained both today and tomorrow.

Under agreement, the house price boom rises monotonically in the level
N0 of demand at t = 0. When demand is low, the shock fails to raise prices
because agents continue to expect the city to be unconstrained at t = 1. Cities
at an intermediate level of demand experience intermediate booms, with larger
booms in places with more initial demand. Over the range e−μx < N0 < 1, a
larger N0 indicates that the city is closer to being constrained, so that a greater
share of the shock x appears in prices at t = 1. When demand is sufficiently high
(N0 ≥ 1), the shock passes through at a constant rate to the price of housing.
Pass-through does not vary with N0 over this range because of the constant
elasticity specification of D(v) in Assumption 1.

III. Equilibrium with Disagreement

This section describes the equilibrium at t = 0 under disagreement about
future demand growth, which holds when x, z > 0 as assumed throughout this
section. We study the effect of disagreement on land holdings and the price of
housing, the aggregation of beliefs into the price of housing, and the variation in
house price booms across cities depending on their initial level of development.
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A. Dispersed Homeownership and Land Speculation

Proposition 2 formally describes the equilibrium allocation of land and hous-
ing at t = 0.

PROPOSITION 2: In equilibrium, housing is held at t = 0 by potential residents of
each type θ ∈ supp fr. For land holdings, there exists N∗

0 (x, z) ∈ R>1 ∪ {∞} such
that:

� (Unconstrained) If N0 ≤ e−μmax
d x, then some developers hold land at t = 0,

and these developers may be of any type θ ∈ supp fd.
� (Intermediate) If e−μmax

d x < N0 < N∗
0 (x, z), then some developers hold land

at t = 0, and all of these developers have type θ = θmax
d . Furthermore, there

exists L∗ ∈ (0, S) such that if the sum of L0 across developers for whom
θ = θmax

d is less than L∗, then the sum of (Lbuy
0 )∗ across these developers

exceeds the sum of (Hbuild
0 )∗ across them.

� (Constrained) If N0 ≥ N∗
0 (x, z), then no developers hold land at t = 0.

N∗
0 (x, z) = ∞ if and only if

∫
θ≥θmax

d
fr(θ )dθ = 0 and

∫
θ<θmax

d
(eμmax

d x/ε −
eμ(θ)x/ε)−ε fr(θ )dθ ≤ 1.

In equilibrium, homeownership at t = 0 is dispersed among potential resi-
dents of all beliefs. A potential resident buys a house at t = 0 if v > ph

0 − Eph
1.

The number of homebuyers of type θ equals N0SD(ph
0(N0, x, z) − ph

1(eμ(θ)x N0)),
which is positive for all θ ∈ �. Positivity depends on Assumption 1, which
guarantees that D(v) > 0 for any argument. There exist potential residents
with arbitrarily high flow utility, so no matter how expensive housing appears
to them, some potential residents of each type choose to buy.13

Developers choose not to hold housing at the end of t = 0 because it is cheaper
to hold land and build a house at t = 1 for k instead of paying 2k at t = 0. In
the land market, a developer wants to purchase an infinite amount of land if
pl

0 < Epl
1. This situation cannot hold in equilibrium, so for all θ ∈ supp fd,

pl
0(N0, x, z) ≥ pl

1(eμ(θ)x N0). (23)

For θ such that (23) holds with equality, a developer of type θ is indifferent to
holding land at t = 0. For θ such that (23) is a strict inequality, developers of
type θ choose not to hold land at the end of t = 0, that is, they either sell it or
build houses using the land and sell the houses. As a result, only developers
for whom pl

1(eμ(θ)x N0) = pl
1(eμmax

d x N0) may hold land at t = 0. This is a simple
statement of the result that prices in asset markets with disagreement and

13 This point relates to the work of Cheng, Raina, and Xiong (2014), who find that securitized
finance managers did not sell off their personal housing assets during the boom. They interpret this
result as evidence that these managers had the same beliefs as the rest of the market about future
house prices. An alternative interpretation is that the managers did doubt market valuations, but
continued to own housing because they derived sufficiently high utility from housing to compensate
for low expected capital gains.
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limited short-selling tend to reflect the beliefs of the most optimistic agents
(Miller (1977)).

Under two conditions, undeveloped land remains at the end of t = 0 and
is held only by developers for whom θ = θmax

d . First, developers must disagree
about their expectations of pl

1 so that pl
1(eμ(θ)x N0) < pl

1(eμmax
d x N0) when θ < θmax

d .
Because pl

1(·) strictly increases only on [1,∞), this monotonicity condition holds
if and only if N0 > e−μmax

d x. The second condition is that some undeveloped land
remains at the end of t = 0. This condition is met if S exceeds potential resident
demand at the price that attracts optimistic developers to hold land:

S > N0S
∫

�

D
(
k + ph

1(eμmax
d x N0) − ph

1(eμ(θ)x N0)
)

fr(θ )dθ. (24)

The proof of Proposition 2 shows that there exists a cutoff N∗
0 (x, z) > 1 such

that the above inequality holds if and only if N0 < N∗
0 (x, z). When N∗

0 (x, z) < ∞,
a sufficiently large number of potential residents will always outbid the most
optimistic developers for space.

Proposition 2 shows how the housing and land markets differ in the concen-
tration of ownership among optimists. While potential residents of all beliefs
own housing, land is owned only by the most optimistic developers in cities
where the initial level of demand takes on intermediate values. The idea that
real estate speculation transpires largely in land markets departs from the
literature, which focuses mostly on investors in houses.14

Developers can carry land over between t = 0 and t = 1 and thus care about
future prices. This feature raises the possibility that they buy land in advance
of their immediate construction needs according to their beliefs about future
demand. We refer to this behavior as supply-side speculation. In the model,
if undeveloped land remains and the most optimistic developers own all of it,
then they must have bought more than they used for homebuilding (unless
they were initially endowed with enough land). Proposition 2 formally states
this prediction, which we explore in Section V by examining the balance sheets
of U.S. public home builders during the boom and bust of the early 2000s.

B. Belief Aggregation

We next characterize how the equilibrium house price at t = 0 aggregates
the disparate beliefs of developers and potential residents. For N0 ≥ N∗

0 (x, z),
we define the aggregate potential resident belief μ

agg
r (N0, x, z) to be the unique

solution to

1 = N0

∫
�

D
(
k (1 + eμ

agg
r x/ε)N1/ε

0 − ph
1(eμ(θ)x N0)

)
fr(θ )dθ, (25)

where existence and uniqueness are established in the proof of Lemma 3. This
aggregator takes the formula for ph

0(N0, x, 0) from Proposition 1 and calculates

14 See, for example, Barlevy and Fisher (2011), Haughwout et al. (2011), Bayer et al. (2015), and
Chinco and Mayer (2015).
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the value that must replace μ such that the resulting price clears the mar-
ket in equilibria in which z > 0 and no developers hold land. In this sense,
μ

agg
r (N0, x, z) describes how the market aggregates the disparate beliefs of po-

tential residents. In particular, μ
agg
r (N0, x, z) always lies below the maximal

potential resident belief μmax
r , as shown in the proof of Lemma 3.

The following lemma describes the effect of disagreement on the aggregate
potential resident belief under certain conditions.

LEMMA 3: If
∫
�

θ fr(θ )dθ = 0 and supp fr ⊂ [−μ/z, θmax
d ], then μ

agg
r (N0, x, z) > μ

and μ
agg
r (N0, x, z) = μ + o(z) as z → 0.

When the mean potential resident belief is μ and these beliefs fall within
certain bounds, the belief aggregator exceeds the mean belief μ.15 The Miller
(1977) effect is in force: with disagreement, the aggregate belief implied by
market-clearing is greater. However, for small values of z, the Miller (1977)
effect is only of second-order importance. To the first order, the decline in de-
mand from pessimists perfectly offsets the increase in demand from optimists,
so small disagreement does not change the aggregate belief.

The following proposition characterizes the equilibrium house price under
disagreement for all values of N0:

PROPOSITION 3: The equilibrium house price at t = 0 equals

ph
0(N0, x, z) =

⎧⎪⎨⎪⎩
2k if N0 ≤ e−μmax

d x (unconstrained)
k + keμmax

d x/ε N1/ε

0 if e−μmax
d x < N0 < N∗

0 (x, z) (intermediate)

k
(
1 + eμ

agg
r (N0,x,z)x/ε

)
N1/ε

0 if N0 ≥ N∗
0 (x, z) (constrained).

(26)

Proposition 3 shows how the allocation of land and housing among developers
and potential residents affects the price of housing at t = 0. There are two im-
portant differences between cities with different initial demand levels in terms
of how prices aggregate beliefs. First, developer beliefs matter more in inter-
mediate cities, whereas potential resident beliefs matter more in constrained
cities. Given the stark assumptions of our model (in particular, the linear pro-
duction technology for houses as well as the absence of an alternate use for
land), prices in intermediate cities reflect only the beliefs of developers. Recent
research measures owner-occupant beliefs about the future evolution of house
prices.16 Data on the expectations of home builders would supplement the

15 The condition on supp fr implies that 0 ≤ μ(θ ) ≤ μmax
d for all potential residents, which leads

the demand curve for housing to be globally convex with respect to θ . Global convexity implies
that disagreement (holding the price constant) stimulates the demand of optimists more than it
attenuates the demand of pessimists. Thus, Jensen’s inequality implies that the price that clears
the market under disagreement exceeds the market-clearing price with agreement, meaning that
μ

agg
r (N0, x, z) > μ.

16 See Landvoigt (2014), Case, Shiller, and Thompson (2012), Burnside, Eichenbaum, and Rebelo
(2015), Soo (2013), Suher (2014), and Cheng, Raina, and Xiong (2014).
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research on owner-occupant beliefs to explain house price movements, espe-
cially in cities with intermediate levels of development.

The second difference between intermediate-demand and high-demand
cities relates to how they aggregate the beliefs of the relevant class of agents.
In intermediate cities, prices reflect the most optimistic belief μmax

d . Other
than the maximal value of its support, all other information encoded in the
distribution fd of θ across developers is irrelevant for prices. In contrast, the
entire distribution fr of potential resident beliefs matters for house prices
when N0 ≥ N∗

0 (x, z). This stark contrast depends on the absence of other
constraints on developer size such as risk aversion or capital constraints.
The more general point is that when land is held by potential residents,
prices need not reflect the most optimistic belief. This is because residents
derive utility from housing that may not be correlated with expected capital
gains. Moreover, because these utility benefits exhibit diminishing returns,
homeownership will tend to be more dispersed than land ownership.

Prices reflect more optimistic beliefs in intermediate cities than in con-
strained cities when μmax

d > μ
agg
r (N0, x, z) for all N0 ≥ N∗

0 (x, z). The following
assumption on the belief distributions is necessary for this relationship to
hold.

ASSUMPTION 5: eμmax
r x/ε − eμmax

d x/ε < 1 and
∫
�

(1 + eμmax
d x/ε − eμ(θ)x/ε)−ε fr(θ )dθ < 1.

Assumption 5 holds when fr = fd, so that the distribution of beliefs is the
same for each class of agents, but it may hold even if some potential residents
are more optimistic than the most optimistic developer. The assumption fails if
there is a sufficiently large group of residents with very optimistic beliefs. We
invoke Assumption 5 to analyze the effect of disagreement on the house price
boom at t = 0.

C. The Effect of Disagreement on House Prices

We turn now to the model’s key result, which concerns the effect of disagree-
ment on the price of housing at t = 0.

PROPOSITION 4: The effect of disagreement on the house price at t = 0 is given
by

ph
0(N0, x, z)

ph
0(N0, x, 0)

− 1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if N0 ≤ e−μmax
d x

1
2

(
eμmax

d x/ε N1/ε

0 − 1
)

if e−μmax
d x < N0 ≤ e−μx(

eμmax
d x/ε − eμx/ε

)
N1/ε

0

1+eμx/ε N1/ε

0

if e−μx < N0 ≤ 1(
eμmax

d x/ε − eμx/ε
)

N1/ε

0 −
(

N1/ε

0 − 1
)

(1+eμx/ε )N1/ε

0

if 1 < N0 < N∗
0 (x, z)

eμ
agg
r (N0,x,z)x/ε − eμx/ε

1+eμx/ε if N0 ≥ N∗
0 (x, z).

(27)
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The increase is positive for N0 ∈ (e−μmax
d x, 1] and is strictly maximized at N0 = 1.

If supp fr ⊂ [−μ/z, θmax
d ] and

∫
�

θ fr(θ )dθ = 0, then the increase is also positive
for all N0 > 1, and the marginal effect of small disagreement on the price of
housing,

∂ ph
0(N0, x, 0)/∂z
ph

0(N0, x, 0)
=

⎧⎪⎨⎪⎩
0 if N0 < e−μx

θmax
d x

ε

eμx/ε N1/ε

0

1+eμx/ε N1/ε

0
if e−μx ≤ N0 ≤ 1

0 if N0 > 1,

(28)

is positive only for e−μx ≤ N0 ≤ 1.

The first part of Proposition 4 calculates the relative effect of disagreement
on ph

0(N0, x, z) by comparing the price formulas in Propositions 1 and 2. We
now describe the effect of disagreement on the price of housing in each regime
using the expressions in Proposition 4.

When N0 ≤ e−μmax
d x, all developers agree that ph

1 = k, because the city will
remain unconstrained at t = 1. Disagreement between developers on how to
interpret the shock x is irrelevant for today’s price. Consistent with basic in-
tuition, a fully unconstrained city reacts similarly to an expected shock under
agreement and disagreement.

When e−μmax
d x < N0 ≤ e−μx, the most optimistic developers expect the city to

be constrained, so that ph
1 > k, but a developer with the average belief does not.

As a result, disagreement raises the price of housing. This increase is larger
when N0 is greater because the price the most optimistic developer expects at
t = 1 rises with the level of demand.

The analysis of the case e−μx < N0 ≤ 1 is similar, except that now the average
developer believes that the city will be constrained in the future. Within this
range, ph

1 > k under both the average and most optimistic developer beliefs.
The effect of disagreement reflects the extent to which the optimistic developer
belief of ph

1 exceeds the average belief, with this difference appearing in the
numerator. As N0 increases, ph

0(N0, x, 0) places more weight on beliefs about
t = 1 relative to the user cost at t = 0, so the effect of disagreement on this
price increases as well.

The effect of disagreement is most subtle when 1 < N0 < N∗
0 (x, z). In this

range, disagreement changes the equilibrium from one in which potential
residents own all space to one in which the most optimistic developers hold
some land. This change alters the house price in two opposing ways, corre-
sponding to the two terms in the numerator in Proposition 4. The first term
is positive, as beliefs about ph

1 rise from keμx N1/ε

0 to keμmax
d x N1/ε

0 . The second
term is negative, as the flow valuation of the marginal buyer at t = 0 falls
from kN1/ε

0 to k. These terms reflect a change in land ownership at the margin:
under agreement, the marginal buyer is a potential resident whose housing
utility equals kN1/ε

0 ; under disagreement, the marginal buyer is a developer
whose flow value of housing is k. The net price effect strictly decreases with
N0 because utility crowd-out increases relative to N1/ε

0 as N0 gets larger.
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When N∗
0 (x, z) < ∞, the effect of disagreement eventually reaches the level

given in the final regime of Proposition 4. The effect is positive when
μ

agg
r (N0, x, z) > μ for all N0 ≥ N∗

0 (x, z), which holds given the conditions in the
proposition as shown by Lemma 3. When N∗

0 (x, z) = ∞, for large N0, the effect
of disagreement on the house price approaches (eμmax

d x/ε − eμx/ε − 1)/(1 + eμx/ε),
which the proof of Proposition 4 shows is positive.

The key result is that the effect of disagreement in the N0 ≥ N∗
0 (x, z) regime

is less than that at N0 = 1. This comparison depends on Assumption 5, which
guarantees that μ

agg
r (N0, x, z) < μmax

d , and on Assumption 2, which leads to
dispersion of homeownership among potential residents of all beliefs.

The last part of Proposition 4 isolates the effect of disagreement by studying a
small increase in z from z = 0. As shown by Lemma 3, this increase has no first-
order effect on μ

agg
r (N0, x, z) (under the given conditions on fr). In contrast, the

increase in z raises the maximal developer belief μmax
d to the first order because

∂μmax
d /∂z = θmax

d > 0. As a result, the marginal effect of small disagreement is
positive only in the intermediate region of N0.

In summary, disagreement raises the price of housing everywhere except
cities where the level of demand is very low and possibly cities where the
level of demand is very high but many extreme optimists and pessimists
exist. For specifications of the joint distribution of resident and developer
beliefs that satisfy Assumption 5 (such as identical distributions in the
two subpopulations), disagreement raises the price most in cities with an
intermediate level of development.

D. Variation in Price Booms across Cities

Proposition 5 characterizes how the house price boom under disagreement
varies across cities.

PROPOSITION 5: The house price boom under disagreement,

ph
0(N0, x, z)

ph
0(N0, 0, z)

− 1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if N0 ≤ e−μmax
d x

1
2

(
eμmax

d x/ε N1/ε

0 − 1
)

if e−μmax
d x < N0 ≤ 1

1
2

(
eμmax

d x/ε − 2 + N−1/ε

0

)
if 1 < N0 < N∗

0 (x, z)
1
2

(
eμ

agg
r (N0,x,z)x/ε − 1

)
if N0 ≥ N∗

0 (x, z),

(29)

is strictly maximized at N0 = 1.

As in Proposition 1, we define the price boom as the effect of the
shock x on ph

0(N0, 0, z). This boom can be decomposed into the product
of ph

0(N0, x, 0)/ph
0(N0, 0, 0) (the marginal effect of x when z = 0 given by

Proposition 1) and ph
0(N0, x, z)/ph

0(N0, x, 0) (the marginal effect of z given by
Proposition 4).17 The former monotonically increases in the level of initial

17 Here, we are using the fact that ph
0(N0, 0, z) = ph

0(N0, 0, 0) because z becomes irrelevant when
x = 0.
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Figure 2. House price boom for different initial demands. The boom size equals the rel-
ative size of the equilibrium house price at t = 0 with versus without the shock x, that is,
ph

0(N0, x, z)/ph
0(N0, 0, z) − 1 with disagreement and ph

0(N0, x, 0)/ph
0(N0, 0, 0) − 1 without disagree-

ment, where N0 equals the number of potential residents at t = 0 relative to the amount of space
in the city, and z equals the level of disagreement at t = 0. The parameter values used to generate
this figure are x = 0.5, z = 1, ε = 1, μ = 0.2, and fr = fd, with 90% of agents having θ = −1/9
and 10% having θ = 1. These parameters are defined in Section I. (Color figure can be viewed at
wileyonlinelibrary.com)

demand N0, whereas the latter strictly peaks at N0 = 1. Proposition 5 shows
that the combined effect also strictly peaks at N0 = 1, meaning that, with
disagreement, the result that demand shocks raise prices most in constrained
cities no longer holds.

The intuition behind Proposition 5 is similar to that of Proposition 4. Cities
with low initial demand experience no price boom because all developers agree
that they will remain unconstrained at t = 0. For intermediate cities where
e−μmax

d x < N0 ≤ 1, prices rise according to the beliefs of the most optimistic de-
veloper. For intermediate cities with 1 < N0 < N∗

0 (x, z), prices rise less when
N0 > 1 because of the utility crowd-out of homeowners by developers. Finally,
prices rise for N0 ≥ N∗

0 (x, z) according to the aggregate beliefs of all potential
residents. Under Assumption 5, this aggregate belief falls short of the most
optimistic developer belief, so the price boom is largest when N0 = 1.

To illustrate the variation in the price boom across cities, Figure 2 plots the
expression from Proposition 5 across different values of N0, both for a positive
value of z and for z = 0. We set fr = fd so that the conditions of Assumption 5
hold. As can be seen in the figure, disagreement amplifies the boom everywhere
except in cities with small initial demand where disagreement has no effect.
The amplification is largest in cities with intermediate values of initial
demand, leading the boom to be largest in the case of disagreement at N0 = 1.
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The boom in the case of agreement rises monotonically with respect to the
level of initial demand.

E. Disagreement and Welfare

Disagreement can reallocate space from pessimists to optimists. This
reallocation destroys welfare if some of the pessimists are potential residents
with high flow utility and some of the optimists are developers or potential
residents with lower flow utility. To formally analyze the effect of disagreement
on welfare, we adopt the “belief-neutral Pareto efficiency” criterion proposed by
Brunnermeier, Simsek, and Xiong (2014) as a welfare measure for models
with heterogeneous beliefs. An allocation is belief-neutral Pareto-efficient if it
is Pareto-efficient under all linear combinations of agent beliefs. Proposition 6
shows that disagreement reduces welfare in intermediate and constrained
cities.

PROPOSITION 6: The equilibrium allocation is belief-neutral Pareto-efficient if
z = 0 or N0 ≤ e−μmax

d x and is belief-neutral Pareto-inefficient otherwise.

While disagreement may lead only to welfare-neutral transfers in the stock
market, this result demonstrates that disagreement tends to lower welfare in
the housing market.

The reallocations that improve welfare when z > 0 are as follows. When
e−μmax

d x < N0 < N∗
0 (x, z), there exists a potential resident who chooses not to

buy despite having flow utility v > k. The resource cost of building a house at
t = 0 instead of t = 1 is k, so there exists a cash transfer from this potential
resident to a developer that makes them both better off if the developer builds
a house and gives it to the potential resident. For N0 ≥ N∗

0 (x, z), there exist
potential residents with flow utilities v1 and v2 such that v1 < v2 and the
potential resident with v = v1 buys, whereas the one with v = v2 does not.
With a suitable cash transfer, changing which potential resident owns the
house improves the welfare of both. Under the z = 0 equilibrium allocation,
these situations never occur.

IV. Extensions and Additional Predictions

A. Equity Financing

The developers in the baseline model raise any needed funds at t = 0 using
debt. Section I of the Internet Appendix presents an extension in which devel-
opers may raise funds only through equity offerings. The analysis formalizes
results that we explore empirically in Section V, in which we examine the
market value and short-selling of the equity of public developers during the
2000 to 2006 U.S. housing boom.

In this extension, equity investors constitute a third class of agents. Across
equity investors, the distribution of beliefs fi about μtrue satisfies Assumption 3,
which guarantees the existence of a most optimistic equity investor, and
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Assumption 4, which ensures disagreement when z > 0. Some of the devel-
opers endowed with land at t = 0 may raise funds by selling claims on their
t = 1 liquidation values to these investors.18 Each equity investor may borrow
freely at a rate of zero to finance positive purchases of these claims. In contrast,
to sell these claims short, equity investors must pay a positive proportional fee.
Furthermore, each equity investor may sell short a limited number of claims.
In equilibrium, a price exists for the claim on each developer able to access the
equity market such that the value of the claims sold by the developer equals
the net quantity demanded by equity investors.

The following proposition characterizes the price of housing, the allocation of
land holdings, the price of developer equity, and the total short position of equity
investors at t = 0.19 We define ph

0(N0, x, z, fr, fd) to be the equilibrium value of
ph

0 in Proposition 2 given the potential resident belief distribution fr and the
developer belief distribution fd, and we denote by θmax

i and μmax
i = μ(θmax

i ) the
type and belief of the most optimistic equity investor.

PROPOSITION 7: If xz = 0, then the aggregate value of short claims equals zero,
and there exists an equilibrium in which no equity issuance nor land purchases
occur. If xz > 0,

� if
∑

θ>θmax
i

L0 = 0, then the equilibrium house price equals ph
0(N0, x, z, fr, fi);

� if
∑

θ<θmax
i

L0
S > e−μmax

i x, among developers without access to equity then there

exists N0 for which the following hold:

(a) some developers issue equity with positive value,
(b)

∑
(Lbuy

0 )∗ >
∑

(Hbuild
0 )∗ across developers issuing equity,

(c) the total short position in this equity is positive for some values of the
short fee,

(d) the equity price for each such developer exceeds the price under x = 0,
and

(e) the equity price for each such developer falls from t = 0 to 1 iff μmax
i >

μtrue.

If none of the developers endowed with land are more optimistic than the
most optimistic equity investor (for example, if the developer and investor be-
lief distributions coincide), the pricing formula in Proposition 2 carries over to
the model with equity financing with one difference: now the most optimistic
equity investor belief replaces the most optimistic developer belief. The non-
monotonicity of the house price boom and the disagreement price effect also

18 The developers who cannot access the equity market represent small firms and nonprofit
landowning entities like governments and Native American tribes that are not able to issue equity.

19 In this extension, land that remains undeveloped at the end of t = 0 pays a small positive
dividend at the beginning of t = 1. Proposition 7 specifies the limiting equilibrium price as this
dividend goes to zero. The sole purpose of this dividend is to ensure the existence of equilibrium
when ph

0(N0, x, z) = 2k.
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carry over as long as θ ≤ θmax
i for nonlandowning developers.20 The most opti-

mistic investor prices all developer equity because long positions are unlimited,
while short positions are costly. When

∑
θ>θmax

i
L0 = 0, all developers are willing

to sell equity backed by their landholdings to investors or to sell their land-
holdings at the optimistic investor valuation. As a result, the equilibrium land
price coincides with the optimistic investor valuation, leading to an equilibrium
house price of ph

0(N0, x, z, fr, fi).21

Proposition 7 also characterizes quantities in the equity and land markets
without and with disagreement. Without disagreement, short-selling never
occurs because all investors agree on the equity valuations and the short fee is
positive. Equity issuance and land purchases by developers are not guaranteed
to occur because developers are indifferent between selling land, selling equity,
and holding land until t = 1.

With disagreement, equity issuance, land purchases by equity-issuing devel-
opers, and short-selling of that equity all occur in equilibrium as long as the
short fee is small enough and pessimistic developers without equity market
access hold enough land. With enough pessimistic developers, other developers
must raise funds from optimistic investors to buy out the pessimists and sat-
isfy the expected demand of potential residents. Equity-issuing developers buy
land in excess of their immediate construction needs, resembling the optimistic
developers characterized by Proposition 2.

B. Housing Rental Market

In the baseline model, potential residents derive housing utility only from
owning and may own only one house. To explore the importance of these
restrictions, Section II of the Internet Appendix presents an extension in
which rental contracts are available and potential residents may operate as
landlords.

In this extension, potential residents may buy any positive amount of hous-
ing. They choose how much housing to lease as landlords and how much to
keep as owner-occupied housing. Potential residents may also choose to rent
housing as tenants. A fraction χ of potential residents receive housing utility
v if and only if they occupy at least one unit of housing as a tenant, and the
remaining potential residents receive v if and only if they occupy at least one
unit of housing as an owner-occupant. Rental prices at t = 0 and t = 1 clear the
market, so that the quantity of housing chosen to be leased by landlords equals
the quantity chosen to be rented by tenants.

20 In this case, θmax
d ≤ θmax

i , so Assumption 5 (on which Propositions 4 and 5 rely) holds with
μmax

i in place of μmax
d .

21 Section I of the Internet Appendix analyzes in detail the case in which
∑

θ>θmax
i

L0 > 0. In this
case, some landowning developers are more optimistic than the most optimistic investor. There
may exist values of N0 at which these optimistic developers hold land in equilibrium, with the
t = 0 house price independent of the beliefs and endowments of all other developers.
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We define N∗
0 (x, z, fr) to be the value of N∗

0 in Proposition 2 given the potential
resident belief distribution fr, and we define the distribution f χ

r by f χ
r (θ ) =

χ1θmax
r

+ (1 − χ ) fr(θ ). The following proposition describes the t = 0 equilibrium
in the rental extension.

PROPOSITION 8: If xz = 0, χ equals the share of the housing stock that is rented.
If xz > 0,

� the equilibrium house price equals ph
0(N0, x, z, f χ

r , fd);
� there exists χ∗(x, z) ∈ (0, 1] such that the house price boom is strictly maxi-

mized at N0 = 1 if μmax
r < μmax

d or if μmax
r ≥ μmax

d and χ < χ∗(x, z); and
� the house price boom depends on χ only if N0 ≥ N∗

0 (x, z, f χ
r ), in which case

it increases.

As shown by Proposition 8, the equilibrium house price assigns addi-
tional weight to the optimistic resident belief in proportion to the under-
lying share of potential residents who prefer renting. This skewing occurs
because only the most optimistic potential residents become landlords in
equilibrium.

Proposition 8 further shows that the nonmonotonicity of the house price
boom characterized by Proposition 5 carries over to this setting under certain
conditions. If μmax

r < μmax
d , then the house price boom remains maximized at

N0 = 1 for all χ because the developers pricing housing at that point are more
optimistic than the residents pricing housing in markets where developers
do not participate. In the more interesting case in which μmax

r ≥ μmax
d , the

price boom is maximized at N0 = 1 only for sufficiently small values of χ .
This χ < χ∗(x, z) constraint need not be very restrictive—if μmax

r = μmax
d , then

χ∗(x, z) = 1, so the boom remains nonmonotonic as long as some positive
measure of potential residents prefer owner-occupancy to renting.

The last part of Proposition 8 delivers the empirical prediction that among
identical cities where no land remains, cities in which a higher share of hous-
ing is rented without disagreement experience larger house price booms with
disagreement. We explore this prediction in Section V.

C. Continuous Housing Supply Elasticity

A key statistic used to analyze house price booms is the elasticity of hous-
ing supply (Glaeser, Gyourko, and Saiz (2008), Mian and Sufi (2009)). In the
baseline model, this elasticity is zero when all land is used for housing and infi-
nite when some undeveloped land remains. Disagreement amplifies the house
price boom most when e−μmax

d x < N0 < N∗
0 (x, z), the parameter region in which

supply is perfectly elastic at t = 0 but is expected by the optimistic developers
to be perfectly inelastic at t = 1. This characterization suggests that disagree-
ment amplifies price booms most when supply is elastic today but expected to
be inelastic tomorrow. To see how robust this conclusion is, Section III of the
Internet Appendix extends the rental market model to the case in which the
supply elasticity declines continuously with the level of initial demand.
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In this extension, developers may rent out undeveloped land on spot markets
each period to firms that use the city’s land as an input. The land demand from
these firms at t = 0 and t = 1 is given by a continuously differentiable, decreas-
ing, positive function of the spot rental rate. The limiting values of this function
for small and large rents are sufficiently extreme that a unique equilibrium ex-
ists, and this function becomes weakly more inelastic for larger rents.

Given a house price ph
t , a unique partial equilibrium exists in which

developers optimize and the land markets clear. We define the elasticity of
supply to be the partial derivative of the log of the housing stock chosen by de-
velopers with respect to ph

t , all normalized by the house rent rh
t .22 As shown in

Section III of the Internet Appendix, there exists a continuous, decreas-
ing function εs : R+ → R+ such that the supply elasticity equals εs(Nt)
when z = 0.

It is difficult to provide an exact solution for the house price boom (a coun-
terpart for Proposition 5) in this setting. Instead, the following proposition
solves for the marginal impact of the shock x on the equilibrium house price
ph

0(N0, x, z, χ ) when x or z is zero. We then use the formulas from these special
cases to describe the distinct roles played by the current and future housing
supply elasticity.

PROPOSITION 9: The following approximation holds exactly for x = 0 or z = 0:

∂ log ph
0(N0, x, z, χ )

∂x
≈
(

μ + εs(N0)θmax
d + χεθmax

r + (1 − χ )εθavg
r

εs(N0) + ε
z
)

(
εs
(
eμx N0

)+ ε
)−1

1 + e− ∫ x
0 (εs(eμx′ N0)+ε)−1

μdx′
, (30)

where θ
avg
r = ∫

�
θ fr(θ )dθ .

Proposition 9 confirms the intuition from the main model on the distinct roles
played by the supply elasticities at t = 0 and t = 1. The fraction multiplying
z aggregates beliefs across market participants. When the current elasticity
εs(N0) is higher, more weight is placed on the optimistic developer type θmax

d
because these developers constitute a larger share of the marginal buyers in
the market. A larger εs(N0) implies a greater influence of disagreement on
the house price today. Similarly, a higher χ increases the share of marginal
buyers who are landlords and raises the weight on the optimistic resident
type θmax

r .23

22 Normalizing by rh
t instead of ph

t allows us to use the same function to analyze the supply
elasticity at t = 0 and t = 1. Given the finite horizon of the model, the price at t = 0 is roughly
double the price at t = 1, so supply would be about twice as elastic at t = 0 if we normalized by
ph

t . A unique equilibrium rent exists for χ > 0; when χ = 0, we choose the rent that obtains as the
limit as χ → 0, which is a valid equilibrium rent for χ = 0.

23 The beliefs of nonlandlord potential residents appear only through θ
avg
r , and hence their

disagreements relative to this average are irrelevant for this formula. The intuition for this result
is similar to the intuition for the limit result in Lemma 3. When x is near zero, the variation in
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In contrast, a greater value of εs(eμx N0)—the supply elasticity at t = 1 under
the mean belief—lowers the house price boom at t = 0. A larger supply elasticity
at t = 1 implies smaller pass-through of the shock x to the price at t = 1. This
pass-through is given by (εs(eμx N0) + ε)−1. Similarly, a greater value of εs(eμx N0)
lowers the value of the integral, which captures the expected price tomorrow
relative to today. When this ratio is lower, the pass-through of the shock x to
the price at t = 0 is lower.

In summary, the price boom is largest when εs(N0) is large but εs(eμx N0) is
small. This combination occurs when the shock x pushes the city from hav-
ing a high supply elasticity in the present to possibly having a low supply
elasticity in the future. The possibility of such a transition amplifies the role
of disagreement relative to cases in which transition to low supply elastic-
ity is unlikely or has already occurred. Thus, the intuition from the baseline
model that disagreement affects the size of the house price boom most for
cities at an intermediate level of development translates to this more general
setting.

V. Stylized Facts of the U.S. Housing Boom and Bust

This section uses data from the U.S. housing boom between 2000 and 2006 to
provide evidence consistent with the model’s predictions about the house price
boom at t = 0. We first document the importance of the relationship between
the price of raw land and the price of housing across cities, which supports the
model’s focus on how disagreement interacts with potential land constraints.
We then describe the speculative behavior in land markets among public home-
builders, who resemble the optimistic developers in the model extension in
which developers issue equity. Finally, we show how the model can be used
to understand the booms in the cross section of U.S. cities, as well as across
neighborhoods within cities.

A. The Central Importance of Land Prices

A key assumption of the model is that housing supply is limited in the long
run by development constraints. These constraints lead land prices to rise
during a housing boom, as developers anticipate the exhaustion of land. As a
result, house prices and land prices rise in unison as shown by the result in
Lemma 2 that ph

0 = pl
0 + 2k in equilibrium.

Tracing house price increases to land prices distinguishes our model from
“time-to-build.” Traditionally, housing supply has been modeled as inelastic
in the short run and elastic in the long run (DiPasquale and Wheaton (1994),
Mayer and Somerville (2000)). This paradigm described the U.S. housing
market very well for a time. Topel and Rosen (1988) show that, essentially, all

beliefs about ph
1 among potential residents is small for any z. This small disagreement does not

alter potential resident housing demand because the decline in demand from pessimists perfectly
offsets the increase in demand from optimists.



Arrested Development 2611

variation in house prices between 1963 and 1983 in the United States came
from changes to the construction cost of structures. Temporary shortages of
inputs needed to build a house, such as drywall and skilled labor, could explain
this pattern, with the fluctuations in these input prices causing house price
cycles.

Between 1983 and 2000, a secular shift occurred in housing supply in the
United States Land prices became a much larger share of house prices (Davis
and Heathcote (2007)), especially in certain cities (Davis and Palumbo (2008)).
A large literature, surveyed by Gyourko (2009), attributes this change to the
rise of government regulations restricting housing supply. These rules bound
city growth by limiting the number of building permits issued to developers.
When demand to live in the city rises, land prices increase because the city
cannot expand.

Developers in a city without supply restrictions today might expect them
to arrive in the future. Anticipating these regulatory changes, developers bid
up land prices immediately after a demand shock, even in the absence of cur-
rent building restrictions. In such a city, supply is elastic in the short run, but
inelastic in the long run—it’s “arrested development.” In the baseline model,
cities at an intermediate development level exhibit an extreme case of arrested
development, with infinite supply elasticity at t = 0 and zero supply elasticity
at t = 1 if all land is developed. The equilibrium presented in Proposition 9 con-
siders a more general case in which the supply elasticity declines continuously
with the level of initial demand.

Under arrested development, a nationwide housing demand shock can in-
crease land prices everywhere, not just in cities where regulations currently re-
strict supply. Land prices rise even in areas with rapid construction. In contrast,
time-to-build predicts construction cost increases and not land price increases.
If temporary input shortages are driving house prices, then land prices, which
are fully forward looking, should remain flat.

To assess the relative importance of land prices, we gather data on land
prices and construction costs at the city level between 2000 and 2006. We
use land prices measured directly from parcel transactions during this time.
This approach contrasts with that used by Davis and Heathcote (2007) and
Davis and Palumbo (2008), who measure land prices as the residual when
construction costs are subtracted from house prices. A direct measure of land
prices addresses concerns that such residuals capture something other than
land prices between 2000 and 2006. The land price data we use are the indices
constructed by Nichols, Oliner, and Mulhall (2013). Using land transaction
data, they regress prices on parcel characteristics and then construct city-level
indices from the coefficients on city-specific time dummies.

We measure construction costs using the R.S. Means construction cost survey.
This survey asks home builders in each city to report the marginal cost of
building a square foot of housing, including all labor and materials costs. Survey
responses reflect real differences across cities. In 2000, the lowest cost is $54
per square foot and the highest is $95; the mean is $67 per square foot and
the standard deviation is $9. This survey has been used to study time series
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and spatial variation in residential construction costs (Glaeser and Gyourko
(2005), Gyourko and Saiz (2006), Gyourko (2009)).

As shown by Lemmas 1 and 2, the assumptions of our model imply that
house prices must equal land prices plus construction costs: ph

t = pl
t + kt. Log-

differencing this equation between 2000 and 2006 yields

� log ph = α� log pl + (1 − α)� log k, (31)

where � denotes the difference between 2000 and 2006 and α is land’s share
of house prices in 2000. The factor that matters more should vary more closely
with house prices across cities. Because α and 1 − α are less than 1, the critical
factor should also rise more than house prices do.

Figure 3 plots for each city the real growth in construction costs and land
prices between 2000 and 2006 against the corresponding growth in house
prices. Construction costs did rise during this period, but they rose substan-
tially less than land prices. The growth in construction costs displays very little
variation across cities. The time-to-build hypothesis then does explain some of
the level of house price increases in the United States during the boom, but
none of the cross-sectional variation. Land prices display the opposite pattern,
rising substantially and exhibiting a high correlation with house prices. Each
city’s land price increase also exceeds its house price increase. This evidence
underscores the central importance of land prices for understanding the cross
section of the house price boom, and broadly supports the relative contribution
of arrested development over time-to-build.

B. Supply-Side Speculation by Home Builders

Proposition 2 predicts that, as long as they are not endowed with too much
land, optimistic developers amass land beyond their immediate construction
needs at t = 0 in intermediate cities. Proposition 7 extends this result to the
case in which developers finance themselves with equity and offers additional
predictions about the developer equity market. We examine these predictions
among a class of developers for whom rich data are publicly available: public
home builders. We focus on the eight largest firms and hand-collect landholding
data from their annual financial statements between 2001 and 2010.24

The eight equity-financed large firms we study nearly tripled their land-
holdings between 2001 and 2005, as shown in Figure 4, Panel A.25 Consistent
with Propositions 2, 7(a), and 7(b), these land acquisitions far exceed land
needed for new construction. Annual home sales increased by 120,000 homes

24 Our analysis complements Haughwout et al. (2012), who empirically study the home building
industry and present similar facts based on different data.

25 During this period, these firms bought back $400 million of equity on net, equal to approxi-
mately 0.7% of total assets in 2005. Negative equity issuance is inconsistent with the static model
in Section I of the Internet Appendix, in which developers have equity outstanding at t = 0 only
if they issue equity at t = 0. Negative equity issuance may be consistent with a dynamic model in
which developers can rely on retained earnings to finance additional land purchases or can issue
debt in addition to equity.
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Figure 3. Input price and house price increases across cities, 2000–2006. We measure
construction costs for each city using the R.S. Means survey figures for the marginal cost of
a square foot of an average quality home, deflated by the consumer price index for all urban
consumers (CPI-U). Gyourko and Saiz (2006) provide further information on the survey. Land
price changes come from the hedonic indices calculated in Nichols, Oliner, and Mulhall (2013)
using land parcel transactions, and house prices come from the second-quarter FHFA housing
price index deflated by the CPI-U. The figure includes all metropolitan areas with populations
over 500,000 in 2000 for which we have data. For land prices, we have data for Atlanta, Baltimore,
Boston, Chicago, Dallas, Denver, Detroit, Houston, Las Vegas, Los Angeles, Miami, New York,
Orlando, Philadelphia, Phoenix, Portland, Sacramento, San Diego, San Francisco, Seattle, Tampa,
and Washington D.C. (Color figure can be viewed at wileyonlinelibrary.com)

between 2001 and 2005, while landholdings increased by 1,100,000 lots. One
lot can produce one house, so landholdings rose more than nine times relative
to home sales. In 2005, Pulte changed the description of its business in its
10-K to “We consider land acquisition one of our core competencies.” This lan-
guage appeared until 2008, when it was replaced by, “Homebuilding operations
represent our core business.”

Having amassed large land portfolios, these firms subsequently suffered
significant capital losses. Figure 4, Panel B, documents the dramatic rise
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Panel A. Landholdings and Home Sales
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Figure 4. Supply-side speculation among U.S. public home builders, 2001–2010. Panels
A and B: Data come from the 10-K filings of Centex, Pulte, Lennar, D.R. Horton, K.B. Homes, Toll
Brothers, Hovnanian, and Southern Pacific, the eight largest public U.S. home builders in 2001.
“Lots Controlled” equals the sum of lots directly owned and those controlled by option contracts.
The cumulative writedowns to landholdings between 2006 and 2010 among these home builders
total $24 billion. Panel C: Short interest is computed as the ratio of shares currently sold short
to total shares outstanding. Monthly data series for shares short come from Compustat and for
shares outstanding come from CRSP. We compute mean short interest between 2000 and 2006 for
each six-digit NAICS industry and plot the cumulative distribution of these means. Builder stocks
are classified as those with NAICS code 236117 and investment bank stocks are those with NAICS
code 523110. (Color figure can be viewed at wileyonlinelibrary.com)

and fall in the total market equity of these home builders between 2001 and
2010. Home builder stocks rose 430% and then fell 74% over this period. By
Proposition 7(d), the rise is consistent with a positive shock x > 0 at t = 0.
If we interpret the period between 2006 and 2010 as that between t = 0 and
t = 1, then, by Proposition 7(e), the losses are consistent with a realization of
μtrue below the optimistic investor belief μmax

i .
The majority of the losses borne by home builders arose from losses on the

land portfolios they accumulated from 2001 to 2005. In 2006, these firms began
reporting write-downs to their land portfolios. At $24 billion, the value of the
land losses between 2006 and 2010 accounts for 61% of the market equity
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losses over this time period.26 The home builders bore the entirety of their land
portfolio losses. The absence of a hedge against downside risk supports the
theory that home builder land acquisitions represented optimistic beliefs.

It is hard to argue that this rise and fall in equity prices reflect any monopoly
rents home builders earned by building houses during this period. During the
boom, home building was extremely competitive. Haughwout et al. (2012) doc-
ument that the largest 10 home builders had less than a 30% market share
throughout the boom, with firms outside the largest 60 constituting over half of
market share. Although some consolidation occurred between 2000 and 2006,
these numbers portray an extremely competitive market. If anything, consol-
idation may reflect purchases by optimistic firms of pessimists who chose to
abstain from land speculation.

Consistent with Prediction 7(c), these home builders witnessed heightened
short-selling of their equity during the boom. Figure 4, Panel C, plots the
distribution of the average monthly short interest ratio, defined as the ratio
of shares currently sold short to total shares outstanding, across all industries
between 2000 and 2006. The short interest of home builder stocks lies in the 95th

percentile, meaning that investors short-sold this industry more than nearly
all others during the boom. As a point of comparison, the short interest in
home builders was triple that in investment banks, another industry exposed
to housing at this time. The short interest in home builders provides direct
evidence of disagreement over the value of their land portfolios.27

Several recent papers argue that optimism about house prices was
widespread between 2000 and 2006. For instance, Foote, Gerardi, and Willen
(2012) document 12 facts about the mortgage market during this time that
are inconsistent with incentive problems between borrowers and lenders, but
consistent with beliefs of borrowers and lenders that house prices would con-
tinue to rise. Case, Shiller, and Thompson (2012) directly survey homeowners
during the boom and find that they expected continued appreciation in house
prices over the next decade, as opposed to the bust that eventually occurred.
Cheng, Raina, and Xiong (2014) find that securitized finance managers did not
sell off their personal housing assets during the boom, indicating that these
managers had similarly optimistic beliefs relative to the rest of the market.
The disagreement our model relies on is consistent with such widespread
optimism. Homeowners and investors can be optimistic on average, with
dispersion in beliefs around this optimistic mean. Furthermore, only the
most optimistic investors price land in the model. Thus, a few extraordinarily

26 Total impairments during this time period, which include impairments to goodwill and joint
ventures as well as unclassified impairments, equal $29 billion.

27 An earlier draft of this paper provided the time series of short interest in home builder stock
from 2001 to 2010. Short interest rose from 2001 to 2006, but rose even further from 2006 to 2009.
Home builder short interest was highest as the bust was beginning. This peak may indicate that
disagreement reached its peak after the boom, complicating the idea that disagreement was high
during the boom. Alternatively, the late peak could indicate that shorting is more attractive for
pessimists when they anticipate a bust in the near future.
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optimistic investors have a large price impact, even when nearly all people
agree about the future of house prices.

C. The Cross Section of Cities

House price increases differed markedly across cities during the 2000 to
2006 U.S. housing boom. Propositions 1 and 5 derive house price increases as a
function of city development levels and disagreement. We test these predictions
by interpreting them as comparative statics and then examining them against
the empirical variation in house price increases across cities.

Davidoff (2013) analyzes the ability of housing supply elasticities to explain
the cross-city variation in house price booms during this time. Part of his
analysis measures supply elasticities using price and quantity growth during
the 1980s. He finds that many of the largest bubbles (annualized 2000 to 2007
boom minus annualized 2007 to 2010 bust) occurred in cities with historically
elastic supply and that many of these cities are in the “sand states” of Arizona,
California, Florida, and Nevada.28 We present findings similar to these and
then interpret them using our theoretical results.

We use the Federal Housing Finance Agency’s metropolitan statistical area
quarterly house price indices, and we measure the housing stock in each city at
an annual frequency by interpolating the U.S. Census’s decadal housing stock
estimates with its annual housing permit figures. Throughout, we focus on the
115 metropolitan areas for which the population in 2000 exceeds 500,000. The
boom consists of the period between 2000 and 2006.

Figure 5, Panel A, plots construction and house price increases across cities.
The house price increases vary enormously across cities, ranging from 0% to
125% over this brief six-year period. The largest price increases occurred in two
groups of cities. The first group, which we call the Anomalous Cities, consists of
Arizona, Nevada, Florida, and inland California; these cities comprise a subset
of the “sand state” cities in Davidoff (2013). The other large price increases
occurred in the Inelastic Cities of Boston, Providence, New York, Philadelphia,
and the west coast of the United States; these cities comprise a subset of the
“coastal” cities in Davidoff (2013).

The history of construction and house prices in the Anomalous Cities before
2000 constitutes a puzzle for models in which a city’s housing supply elasticity
is constant. As shown in Figure 5, Panels B and C, from 1980 to 2000, these
cities provided clear examples of very elastic housing markets in which prices
stay low through rapid construction activity. Construction far outpaced the U.S.
average, while house prices remained constant. In a model like Glaeser, Gy-
ourko, and Saiz (2008), in which each city is characterized by constant housing
supply elasticity, the subsequent surge in house prices in these cities is impos-
sible. Perfectly elastic supply should have held down house prices by meeting
whatever housing demand shock arrived in 2000 with higher construction.

28 Gao, Sockin, and Xiong (2015) show that price growth during the boom displays a nonmono-
tonic relationship with respect to Saiz’s (2010) measures of long-run supply elasticity.
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Panel A. Price Increases and Construction, 2000-2006
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Figure 5. The U.S. housing boom and bust across cities. Anomalous Cities include those
in Arizona, Nevada, Florida, and inland California. Inelastic Cities are Boston, Providence, New
York, Philadelphia, and all cities on the west coast of the United States We measure the housing
stock in each city at an annual frequency by interpolating the U.S. Census’s decadal housing stock
estimates with its annual housing permit figures. House price data come from the second-quarter
FHFA house price index deflated by the CPI-U. The figure includes all metropolitan areas with
populations over 500,000 in 2000 for which we have data. Panel A: The cumulative price increase is
the ratio of the house price in 2006 to the house price in 2000. Annual housing stock growth is given
as the log difference in the housing stock in 2006 and 2000 divided by six. Panels B and C: Each
series is an average over cities in a group weighted by the city’s housing stock in 2000. Construction
is annual permitting as a fraction of the housing stock. Prices represent cumulative returns as of
1980 on the housing in each group. (Color figure can be viewed at wileyonlinelibrary.com)
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Our model explains this pattern by distinguishing short-run and long-run
housing supply elasticities. Proposition 1 shows that prices rise in intermediate
cities in which vacant land remains because supply is expected to become
constrained soon. This phenomenon depends on the way we model housing
supply and holds even without disagreement. Figure 1 demonstrates long-run
barriers in Las Vegas. More broadly, the land price increases across the country
shown in Figure 3 indicate the presence of these constraints in other cities, or
at least developers’ anticipation of them.

The price increases in the Anomalous Cities were as large as those in the
Inelastic Cities. The Inelastic Cities consist of markets where house prices rise
because regulation and geography prohibit construction from absorbing higher
demand. We document this relationship in Figure 5, Panels B and C, which
show that construction in these cities was lower than the U.S. average before
2000, while house price growth greatly exceeded the U.S. average. As shown
in Figure 5, Panel A, house prices increased as much in the Anomalous Cities
as they did in the Inelastic Cities. Under the assumption of a common demand
shock, this pattern poses a puzzle without disagreement: Proposition 1 shows
that, without disagreement, constrained cities experience larger house price
booms than intermediate and unconstrained cities.

Proposition 5 explains the pattern. With disagreement z > 0, the same de-
mand shock x > 0 raises the t = 0 house price most in intermediate cities, not in
constrained cities. According to our model, land availability in the Anomalous
Cities facilitated speculation and thus amplified the increase in house prices.
This amplification effect was smaller in the Inelastic Cities, which featured less
undeveloped land. Evidence of disagreement during the boom comes from the
stylized facts about public home builders in Section B, as Proposition 7 shows
that these facts are guaranteed to hold only with disagreement.

A third puzzle is that some elastic cities built housing quickly during the
boom but, unlike the Anomalous Cities, experienced stable house prices. These
cities appear in the bottom-right corner of Figure 5, Panel A, and are located
mostly in the southeastern United States (e.g., Texas and North Carolina).29

Their construction during the boom quantitatively matches that in the Anoma-
lous Cities, but the price changes are significantly smaller. Why was rapid
construction able to hold down house prices in some cities and not others?

Propositions 1 and 5 explain that what distinguishes these cities are their
long-run supply elasticities. A city can have perfectly elastic short-run supply,
yet its long-run supply can be indeterminate. Among the cities with elastic
short-run supply, the intermediate cities face constraints soon, while the
unconstrained cities do not. The model’s explanation of Figure 5, Panel A,
is that the Anomalous Cities are the ones approaching long-run constraints,

29 The cities with annual housing stock growth above 2% and cumulative price increases below
25% are Atlanta, Austin, Charlotte, Colorado Springs, Columbus, Dallas, Denver, Des Moines,
Fort Collins, Fort Worth, Houston, Indianapolis, Lexington, Nashville, Ogden, Raleigh, and San
Antonio.
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whereas the cities in the bottom right did not face development barriers in the
foreseeable future.

Some evidence consistent with this argument comes from the financial state-
ments of Pulte, one of the home builders studied in Section B. In a February
2004 presentation to investors, Pulte listed several of the Anomalous Cities as
“supply constrained markets you may not have expected”: West Palm Beach,
Orlando, Tampa, Ft. Myers, Sarasota, and Las Vegas (Chicago was also listed).
In contrast, Pulte stated that Texas was “the only area of the country with-
out supply constraints in some form,” and listed many of the nonanomalous
elastic cities (Atlanta, Charlotte, and Denver) as “not supply constrained over-
all,” although “supply issues in preferred submarkets” were noted.30 The slides
appear in Section IV of the Internet Appendix.31

An alternate explanation for these cross-sectional patterns is that the
Anomalous Cities simply experienced much larger demand growth between
2000 and 2006 than the rest of the country. Abnormally large demand growth
would increase prices and construction, leading the Anomalous Cities to occupy
the top-right part of Figure 5, Panel A.32 While the application of our model
considers the case of a common demand shock, Figure 5 makes it clear that
demand growth did differ across cities. The cluster of cities in the bottom left
of the graph likely saw low price growth and construction because demand was
flat during this time. The experiences of these cities raise the possibility that
the Anomalous Cities saw abnormally large demand growth just as these cities
saw abnormally small growth.33

We examine whether any abnormal demand shocks experienced by the
Anomalous Cities are sufficient to account for the extreme price movements
in these cities. Mian and Sufi (2009) argue that the shock was the expan-
sion of credit to low-income borrowers. It is possible that this shock affected
the Anomalous Cities more than the rest of the nation because, for instance,
they contained greater shares of low-income individuals, and that this greater
exposure to the shock led to abnormally large price increases.

30 Other cities with supply constraints only in submarkets were Phoenix, Jacksonville, Detroit,
and Minneapolis.

31 The Pulte slides provide narrative support for some of the other assumptions and predictions
of the model. Pulte stated that “[Anti-growth efforts] are not new for heavily populated areas
(Northeast, California) but now are widespread across the country.” This statement indicates that
at least one major developer—the largest public home builder at the time—recognized the rise of
supply restrictions throughout the country, consistent with our assumption of finite long-run land
supply.

32 Another explanation is that the value of the option, described by Titman (1983) and Grenadier
(1996), to develop land with different types of housing may have been largest in the anomalous
cities, but many of these areas consist of homogeneous sprawl (Glaeser and Kahn (2004)), lessening
this concern.

33 Section D was silent on the model’s predictions for construction, which we present in Section
IV of the Internet Appendix. The model is ill-suited to explain construction between 2000 and 2006
because it considers a shock to news about future demand but does not consider a shock to news
about current demand. As shown in Section IV of the Internet Appendix, the shock x does not alter
the equilibrium housing stock, except in intermediate cities with disagreement where x > 0 lowers
the stock relative to the case without disagreement.
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To address this possibility, we calculate the house price booms that would be
predicted from each city’s supply elasticity and relevant demographics in 2000.
We construct the predicted price increases in the following manner. Suppose
that, between 2000 and 2006, each city experienced a permanent increase in
log housing demand equal to xj . From Proposition 9, the resulting increase in
house prices when z = 0 equals

� log ph
j = μxj

2
(
εs

j + ε
) (32)

to the first order in x, where εs
j is city j’s housing supply elasticity. Because

we are exploring a counterfactual without disagreement, this specification as-
sumes that μ does not vary across cities.

Mian and Sufi (2009) show that the following demographic variables predict
the presence of subprime borrowers at the ZIP code level: household income
(negatively), poverty rate, fraction with less than high school education, and
fraction nonwhite. We measure these variables at the metropolitan area level
in the 2000 U.S. Census, and use them to predict the unobserved shock xj . We
denote this vector of demographics, plus a constant and log population, by d j .
Under the null hypothesis that these demographics alone predict the shock,
we can write μxj/2 = βd j + η j , where β is the same across cities, and d j ⊥ η j .
Substituting this expression into equation (32) yields the estimating equation

(
εs

j + ε
)
� log ph

j = βd j + η j . (33)

Estimating β using this equation allows us to calculate the house price boom
predicted by the supply elasticity εs

j and the demographics d j . In equation
(33), the left-hand side represents the house price increase adjusted by the
elasticity of supply, while βd j is the housing demand shock predicted by the
city’s exposure to subprime. We use Saiz’s (2010) supply elasticity estimates
for εs

j , and a value of 0.6 for the housing demand elasticity ε; this value lies
in the range of estimates calculated by Hanushek and Quigley (1980). Using
these data, we produce an estimate β̂ using ordinary least squares in equation
(33). The resulting house price boom predicted from demographics and supply
elasticity equals

E
(
� log ph

j | d j, ε
s
j

) = β̂d j

εs
j + ε

. (34)

Figure 6 plots the actual house price growth against the predicted price
growth for each city in Figure 5, Panel A. The Anomalous Cities remain clear
outliers.34 Abnormal demand growth from low-income borrowers does not ex-
plain the extreme experiences of these cities. In theory, these predicted price

34 Table IA.I in the Internet Appendix presents regression coefficients corresponding to Figure 6.
The table shows that the degree to which the Anomalous Cities are outliers is only slightly smaller
when demographics are controlled.
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Figure 6. Anomalous cities and differential demand shocks, 2000–2006. This figure com-
pares actual price growth during the boom to predicted price growth as a function of city-level
demographics, where predicted price growth proxies for differential demand shocks. Actual price
growth is the annualized log change in the second-quarter FHFA house price index deflated by the
CPI-U. We compute predicted price growth from a cross-sectional regression of actual price growth
on a set of city-level demographics: log population, log of median household income, percent white,
percent white and not Hispanic, percent with less than 9th grade education, percent with less
than 12th grade education, percent unemployed, and percent of families under the poverty line.
Demographics come from the 2000 Census. (Color figure can be viewed at wileyonlinelibrary.com)

increases could have lined up well with the actual increases in the Anomalous
Cities. This alignment would have held if the subprime demographics predicted
the shocks, these cities were very exposed to subprime, and their housing sup-
ply elasticities were low enough. This story fails to explain the anomalous house
price booms, which experienced higher price growth despite elastic supply and
even conditioning on observable drivers of demand. Furthermore, the growth
in subprime credit was widespread, with high-housing-supply elasticity cities
experiencing large expansions in subprime credit without house price growth
(Mian and Sufi (2009), Table VII).

D. Variation in House Price Booms within Cities

Proposition 8 of the model predicts larger price increases in market segments
within a city that attract more renters than owners. A sufficient statistic for
this effect is χ , the share of the housing stock that is rented. Proposition 8
holds only among segments with the same N0, x, and z. This “all else equal”
assumption is unlikely to hold empirically, so our discussion focuses on the
conceptual predictions about within-city variation made by the model.
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We first consider variation in χ across neighborhoods. Neighborhoods provide
an example of market segments because they differ in the amenities they
offer. For instance, some areas offer proximity to restaurants and nightlife,
while others provide access to good public schools. These amenities appeal to
different groups of residents. Variation in amenities therefore leads χ to vary
across space. Neighborhoods whose amenities appeal relatively more to renters
than to owner-occupants are characterized by a higher value of χ .

We obtain ZIP-level data on χ from the U.S. Census, which reports the share
of occupied housing that is rented, as opposed to owner-occupied, in each ZIP
code in 2000. The value of χ varies considerably within cities. Its national mean
is 0.29 and standard deviation is 0.17, while the R2 of regressing χ on city fixed
effects is only 0.12. We calculate the real increase in house prices from 2000
to 2006 using Zillow.com’s ZIP-level house price indices. We regress this price
increase on χ and city fixed effects, and find a positive and highly significant
coefficient of 0.10 (0.026), where the standard error is clustered at the city level.
Thus, consistent with Proposition 8, house prices increased more between 2000
and 2006 in neighborhoods where χ was higher in 2000.

This positive relationship between χ and price increases may not be causal.
Housing demand shocks in the boom were larger in neighborhoods with a higher
value of χ . The housing boom resulted from an expansion of credit to low-income
households (Mian and Sufi (2009), Landvoigt, Piazzesi, and Schneider (2015)).
As a result, the strong covariance of ZIP-level income with χ will tend to bias
our estimates.35 Furthermore, a city-wide demand shock might raise house
prices most strongly in cheap areas due to gentrification dynamics (Guerrieri,
Hartley, and Hurst (2013)), and χ covaries negatively with the level of house
prices within a city.

The appeal of χ is that it predicts price increases in any housing boom in
which there is disagreement about future fundamentals. In general, χ predicts
price increases because it is positively correlated with speculation, not because
it is correlated with demand shocks. Empirical work can test Proposition 8 by
examining housing booms in which the shocks are independent of χ .

The second approach to measuring χ is to exploit variation across different
types of housing structures. According to the U.S. Census, 87% of occupied de-
tached single-family houses in 2000 were owner-occupied rather than rented.
In contrast, only 14% of occupied multifamily housing was owner-occupied.
According to Proposition 8, the large difference in χ between these two
types of housing causes a larger price boom in multifamily housing, all else
equal.

This result squares with accounts of heightened investment activity
in multifamily housing during the boom.36 For instance, a consortium of
investors—including the Church of England and California’s pension fund

35 The IRS reports the median adjusted gross income at the ZIP level. We take out city-level
means, and the resulting correlation with χ is −0.40.

36 Bayer et al. (2015) develop a method to identify speculators in the data. A relevant extension
of their work would be to look at the types of housing speculators invest in.
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CalPERS—purchased Stuyvesant Town & Peter Cooper Village, Manhattan’s
largest apartment complex, for a record price of $5.4 billion in 2006. Their
investment went into foreclosure in 2010 as the price of this complex sharply
fell (Segel et al. (2011)). Multifamily housing attracts speculators because it
is easier to rent out than single-family housing. During periods of uncertainty,
optimistic speculators bid up multifamily house prices and cause large price
booms in this submarket.

VI. Conclusion

In this paper, we argue that disagreement explains an important part of
housing cycles. Disagreement amplifies house price booms by biasing prices
toward optimistic valuations. Our emphasis on how disagreement interacts
with long-run development constraints allows us to explain aspects of the boom
that are at odds with existing theories of house prices. Many of the largest price
increases occurred in cities that were able to build new houses quickly. This
fact poses a problem for theories that stress inelastic housing supply as the
sole source of house price booms, but it sits well with our theory, which instead
emphasizes speculation. Undeveloped land facilitates speculation due to rental
frictions in the housing market. In our model, large price booms occur in elastic
cities facing a development barrier in the near future.

Introducing key aspects of the housing market—heterogeneous ownership
utility and the nature of asset supply—extends and clarifies past work in
finance that has focused on disagreement in financial asset markets. In our
model, disagreement raises the price of housing only under certain conditions
and the relationship between disagreement and asset supply can be nonmono-
tonic. The particular setting of housing markets also presents an important
case in which disagreement reduces welfare, as pessimists with high flow
utility may be replaced by optimists with low flow utility.

We document the central importance of land price increases for explaining
the U.S. house price boom between 2000 and 2006. These land price increases
resulted from speculation directly in the land market. Consistent with this
theory, home builders significantly increased their land investments during the
boom and then suffered large capital losses during the bust. Many investors
disagreed with this optimistic behavior and short-sold home builder equity as
the homebuilders were buying land.

In one of the model’s extensions, price booms are larger in submarkets within
a city where a greater share of housing is rented. We present some evidence for
this prediction, but further empirical work is needed to test it more carefully.
We also look forward to work exploring these findings to understand cycles
outside the United States, in historical episodes, and in other markets with
similar features to housing.

Initial submission: September 4, 2015; Accepted: October 31, 2017
Editors: Bruno Biais, Michael R. Roberts, and Kenneth J. Singleton
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Appendix A

PROOF OF LEMMA 1: If ph
1 > pl

1 + k, then each developer wants to buy an infinite
amount of land, build houses with the land, and then sell the houses. As a result,
the land market cannot clear. If ph

1 < pl
1 + k, then the reverse holds, that is,

developers want to sell an infinite amount of land. The land market cannot
clear in this case either. In equilibrium, the only possibility is that ph

1 = pl
1 + k.

At t = 1, demand from arriving potential residents equals N1SD(ph
1). Supply

from outgoing residents equals zero if ph
1 < 0 and Qr if ph

1 > 0, where Qr is the
number of potential residents who bought at t = 0. Developers are indifferent
to how much housing they sell because ph

1 = pl
1 + k, but the most they can

sell emerges from summing across the two developer constraints to obtain∑
Hsell

1 ≤ ∑
H1 + L1 = S − Qr. The sum of Hsell

1 across developers and potential
residents cannot exceed S.

We now consider three possible equilibria. In the first, pl
1 < 0. This inequality

cannot hold in equilibrium because developer land demand would be infinite
for each developer, and the land market would not clear. The next possibility is
that pl

1 = 0. In this case, demand from arriving potential residents equals N1S.
If N1 > 1, then this equilibrium fails because maximal aggregate home sales
equal S. If N1 ≤ 1, then we construct an equilibrium as follows. We cannot have
N1S > L1 + H1 + Qr for all developers (summing across them delivers a contra-
diction when N1 ≤ 1), so consider a developer for whom N1S ≤ L1 + H1 + Qr.
This developer sets Lbuy

1 = 0, Hbuild
1 = N1S − Qr − H1, and Hsell

1 = N1S − Qr. All
other developers set Lbuy

1 = 0, Hbuild
1 = −H1, and Hsell

1 = 0. All developer con-
straints and optimality conditions are satisfied under these choices, and both
the housing and land markets clear. Finally, we consider the possibility that
pl

1 > 0. Because ph
1 > 0, the first constraint for the developers binds, so we can

rewrite the developer objective function as ph
1 H1 + pl

1(Hbuild
1 − Lbuy

1 ). Because
pl

1 > 0, the developer maximizes this objective by satisfying the second con-
straint and setting Hbuild

1 − Lbuy
1 = L1. Because both constraints are satisfied

with equality, summing across them yields
∑

Hsell
1 = ∑

H1 +∑
L1 +∑

Lbuy
1 . If

the land market clears, the last sum equals zero. The housing market clears
when N1SD(ph

1) = ∑
H1 +∑

L1 + Qr = S. If N1 < 1, then no solution for ph
1 ex-

ists. If N1 = 1, then the only solutions have ph
1 ≤ k, contradicting the assump-

tion that pl
1 > 0. This equilibrium is possible if and only if N1 > 1, in which case

the unique solution is ph
1 = kN1/ε

1 . The optimality conditions and constraints for
all developers are satisfied if they set Hbuild

1 = L1, Hsell
1 = H1 + L1, and Lbuy

1 = 0.
The land and housing markets clear under these choices. In summary, a unique
equilibrium exists for each value of N1. When N1 ≤ 1, only pl

1 = 0 and ph
1 = kare

possible, whereas when N1 > 1, only pl
1 = kN1/ε

1 − k and ph
1 = N1/ε

1 are possible.

PROOF OF LEMMA 2: The utility at t = 1 of a resident who bought at t = 0 equals
ph

1 − ph
0 + v if ph

1 ≥ 0. Housing demand from potential residents at t = 0 equals∫
�

N0SD(ph
0 − ph

1(eμ(θ)x N0)) fr(θ )dθ . For the same argument given in the proof of
Lemma 1 that ph

1 = pl
1 + k, ph

0 = pl
0 + 2k in equilibrium; developers would want
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to buy or sell infinite land otherwise. In all of the equilibria characterized in
the proof of Lemma 1, π = ph

1 H1 + pl
1L1 + B1. By making substitutions using

the constraints of the t = 0 developer problem, we see that the objective at t = 0
is to choose H1, L1 ≥ 0 to maximize (ph

1(eμ(θ)x N0) − ph
0)H1 + (ph

1(eμ(θ)x N0) − ph
0 +

k)L1 + pl
0L0. In all equilibria, all developers choose finite values of H1 and L1,

so the first-order conditions imply ph
1(eμ(θ)x N0) − ph

0 + k ≤ 0 for all θ ∈ supp fd.
Because ph

1(·) increases, either ph
0 = ph

1(eμmax
d x N0) + k, in which case developers

with θ = θmax
d may choose any L1 ≥ 0, or ph

0 > ph
1(eμmax

d x N0) + k, in which case
L1 = 0 for all developers.

We now consider these two possible equilibria. The first may hold only if
potential resident housing demand does not exceed S (developers cannot build
more than this quantity of housing, and the housing market must clear). This
condition reduces to

1 ≥ N0

∫
�

D
(

ph
1(eμmax

d x N0) + k − ph
1(eμ(θ)x N0)

)
fr(θ )dθ. (A1)

If (A1) holds, then we construct an equilibrium as follows. Let Qr =∫
�

N0SD(ph
1(eμmax

d x N0) + k − ph
1(eμ(θ)x N0)) fr(θ )dθ . For one developer for whom

θ = θmax
d , we set Hbuild

0 = Qr, Hsell
0 = Qr, and Lbuy

0 = S − L0. For all other devel-
opers, we set Hbuild

0 = 0, Hsell
0 = 0, and Lbuy

0 = −L0. All developer constraints
and optimality conditions hold, and the housing and land markets clear.

If (A1) fails, then we must have N0 > 1 because D ≤ 1. As a result, we may
define ph

0(N0, x, z) to be the unique solution to

1 = N0

∫
�

D
(

ph
0 − ph

1(eμ(θ)x N0)
)

fr(θ )dθ. (A2)

To see that a solution to (A2) exists, consider that when ph
0 = 2k, the right

side of the equation equals N0 > 1. Because the right side goes to zero
(pointwise) as ph

0 → ∞, by the intermediate value theorem, we may find ph
0

satisfying (A2). This solution is unique because the integrand strictly de-
creases if ph

0 − ph
1(eμ(θ)x N0) ≥ k; this equation must hold at ph

0 = ph
0(N0, x, z)

for at least some θ ∈ supp fr for otherwise the right side of (A2) exceeds one.
Because the right side of (A2) weakly decreases in ph

0, if (A1) fails, then
ph

0(N0, x, z) > ph
1(eμmax

d x N0) + k. As a result, developer constraints and optimal-
ity conditions are satisfied when for all developers Lbuy

0 = 0, Hbuild
0 = L0, and

Hsell
0 = L0; housing and land markets clear as well.
In summary, if (A1) holds, then the unique equilibrium price is ph

0(N0, x, z) =
ph

1(eμmax
d x N0) + k; if (A1) fails, then the unique equilibrium price ph

0(N0, x, z) is
the unique solution to (A2).

PROOF OF PROPOSITION 1: From the proof of Lemma 2, developers hold
land at the end of t = 0 if and only if (A1) holds without equality. When
z = 0, μ(θ ) = μmax

d for all θ ∈ �, so (A1) reduces to 1 ≥ N0. As a result, de-
velopers hold land at the end of t = 0 if and only if N0 < 1, as claimed.
In this case, ph

0(N0, x, 0) = ph
1(eμx N0) + k. If N0 < e−μx, then (from Lemma 1)
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ph
0(N0, x, 0) = 2k; if e−μx ≤ N0 < 1, then ph

0(N0, x, 0) = k(eμx/ε N1/ε

0 − 1). If N0 ≥
1, then ph

0(N0, x, 0) = kN1/ε

0 + p1(eμx N0) is the unique solution to (A2). Because
μx ≥ 0, in this case ph

0(N0, x, 0) = k(1 + eμx/ε)N1/ε

0 , as claimed. The final equa-
tion in the proposition follows from the solution for ph

0(N0, x, 0); note that, in
the intermediate case, if x = 0, then ph

0 = 2k as in the unconstrained case.

PROOF OF PROPOSITION 2: The number of potential residents of type θ who
purchase housing equals N0SD(ph

0(N0, x, z) − p1(eμ(θ)x N0)) > 0, so Assumptions
1 and 2 guarantee that residents of each type θ ∈ supp fr hold housing. To
prove the other parts of the proposition, we show that there exists a unique
N∗

0 (x, z) ∈ R>1 ∪ {∞} such that (A1) holds strictly if and only if N0 < N∗
0 (x, z)

and with equality if and only if N0 = N∗
0 (x, z). We may rewrite (A1) as

1 ≥

⎧⎪⎨⎪⎩
N0 if N0 ≤ e−μmax

d x∫
�1(N0,x,z) N0 fr(θ )dθ + ∫

�2(N0,x,z) e−μmax
d x fr(θ )dθ

+ ∫
�3(N0,x,z)

(
N−1/ε

0 + eμmax
d x/ε − eμ(θ)x/ε

)−ε

fr(θ )dθ if N0 > e−μmax
d x,

(A3)

where �1(N0, x, z) = {θ | θ ≥ θmax
d }, �2(N0, x, z) = {θ | θ < θmax

d } ∩ {θ | eμ(θ)x N0 ≤
1}, and �3(N0, x, z) = {θ | θ < θmax

d } ∩ {θ | eμ(θ)x N0 > 1}. For notational ease, we
name the right side of this inequality φ(N0). We have limN0→0 φ(N0) = 0, and
φ strictly increases for 0 < N0 ≤ e−μmax

d x. The integrands coincide for θ in the
boundary of �2 and �3, so φ′(N0) for N0 ≥ e−μmax

d x equals the sum of the deriva-
tives under the integral signs (the changing limits of integration cancel out).
Therefore, φ strictly increases in N0 for all N0 > 0 except those for which
�2(N0, x, z) = supp fr. For any such N0, 1 > φ(N0) because μmax

d > μ ≥ 0 given
Assumption 4 and given that z > 0. The increasing nature of φ means that
there may exist at most one solution to 1 = φ(N0), and that (A1) is satisfied
strictly for any N0 less than this solution and is not satisfied for any N0 greater
than this solution. We call the solution N∗

0 (x, z). Note that φ(1) < 1 unless∫
�1(1,x,z) fr(θ )dθ = 1, which is impossible by Assumption 4. Therefore, φ(1) < 1

and N∗
0 (x, z) > 1. For later proofs, we note here that limz→0 N∗

0 (x, z) = 1, which
is evident because, for any N0 > 1, limz→0 φ(N0) > 1, while φ(1) < 1 for all z > 0.

The existence of N∗
0 (x, z) implies that some developers hold land if and

only if N0 < N∗
0 (x, z). If N0 < N∗

0 (x, z), then the proof of Lemma 2 shows that
ph

0 = ph
1(eμmax

d x N0) + k and that a developer of type θ may hold land if and
only if ph

1(eμ(θ)x N0) + k ≤ ph
0(N0, x, z). If N0 ≤ e−μmax

d x, then ph
1(eμ(θ)x N0) = k for

all θ ∈ supp fd, so any developer may hold land at the end of t = 0, as claimed.
If e−μmax

d x < N0 < N∗
0 (x, z), then the only developers for whom ph

1(eμ(θ)x N0) ≤
ph

1(eμmax
d x N0) are those for whom θ = θmax

d due to Lemma 1. As a result, only
these developers hold land when N0 satisfies these constraints, as claimed.

We now prove the result on excess land holdings by developers in the in-
termediate case. Define Qr to be the quantity of housing held by potential
residents in equilibrium. From Lemma 2, Qr does not depend on the developer
land endowments L0, and by the first part of the proposition, 0 < Qr < S for
e−μmax

d x < N0 < N∗
0 (x, z). Summing across the constraint on L1 for developers
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at t = 0 with θ = θmax
d yields S − Qr = ∑

L1 = ∑
(L0 + (Lbuy

0 )∗ − (Hbuild
0 )∗). As a

result,
∑

((Lbuy
0 )∗ − (Hbuild

0 )∗) = S − Qr −∑
L0, which exceeds zero as long as∑

L0 < S − Qr ≡ L∗.
Finally, if

∫
θ≥θmax

d
fr(θ )dθ > 0, then limN0→∞ φ(N0) = ∞, leading to N∗

0 (x, z) <

∞. If
∫
θ≥θmax

d
fr(θ )dθ = 0, then limN0→∞ φ(N0) = ∫

θ<θmax
d

(eμmax
d x/ε − eμ(θ)x/ε) fr(θ )dθ ,

so N∗
0 (x, z) < ∞ in this case if and only if this integral exceeds one.

PROOF OF LEMMA 3: First, we prove existence and uniqueness of μ
agg
r (N0, x, z).

For N0 ≥ N∗
0 (x, z), ph

0(N0, x, z) ≥ ph
1(eμmax

d x N0) + k as shown in the proof of
Lemma 2. Because μmax

d > μ ≥ 0, ph
1(eμmax

d x N0) = keμmax
d x/ε N1/ε

0 , so ph
0(N0, x, z) >

kN1/ε

0 . It follows that ph
0(N0, x, z) = k(1 + eμ

agg
r (N0,x,z)x/ε)N1/ε

0 has a unique solu-
tion for μ

agg
r (N0, x, z), as the right side strictly increases from kN1/ε

0 to ∞ as
μ

agg
r (N0, x, z) approaches ∞ (which holds due to the assumption that x > 0).
We next show that μ

agg
r (N0, x, z) < μmax

r . Because the right side of (25) weakly
decreases in μ

agg
r , it suffices to show that

1 > N0

∫
�

D
(
k
(
1 + eμmax

r x/ε
)

N1/ε

0 − ph
1(eμ(θ)x N0)

)
fr(θ )dθ. (A4)

Due to Assumption 4, μmax
r > 0 and

∫
θ<θmax

r
fr(θ )dθ > 0. Because ph

1(·) strictly
increases on [1,∞), ph

1(eμ(θ)x N0) < ph
1(eμmax

r x N0) for θ < θmax
r . When θ = θmax

r , the
argument of D(·) in (A4) equals kN1/ε

0 . Because D(·) strictly decreases on [k,∞),
it follows that the right side of (A4) is strictly less than N0 D(kN1/ε

0 ) = 1, as
desired.

We next use the conditions in the lemma to simplify (25). Because
ph

0(N0, x, z) ≥ ph
1(eμmax

d x N0) + k for N0 ≥ N∗
0 (x, z) (as shown in the proof of

Lemma 2), for all θ ∈ supp fr we may bound the argument of D(·) in (25) as fol-
lows: k(1 + eμ

agg
r (N0,x,z)x/ε)N1/ε

0 − ph
1(eμ(θ)x N0) ≥ k + ph

1(eμmax
d x N0) − ph

1(eμ(θ)x N0) ≥
k, with the last inequality holding because θ ≤ θmax

d by assumption. Further-
more, because θ ≥ −μ/z for all θ ∈ supp fr, μ(θ ) ≥ 0 for all such θ , allowing us to
write ph

1(eμ(θ)x N0) = keμ(θ)x/ε N1/ε

0 for all θ ∈ supp fr. It follows from Assumption
1 that μ

agg
r (N0, x, z) must solve

1 =
∫

supp fr
(1 + eμ

agg
r (N0,x,z)x/ε − eμ(θ)x/ε)−ε fr(θ )dθ. (A5)

We finally show that μ
agg
r (N0, x, z) > μ and that μ

agg
r (N0, x, z) = μ + o(z) as

z → 0. The argument of the integral in (A5) is convex in θ for θ ∈ supp fr, so
Jensen’s inequality implies that 1 > (1 + eμ

agg
r (N0,x,z)x/ε − eμx/ε)−ε , from which it

follows that μ
agg
r (N0, x, z) > μ. Taking the derivative of (A5) with respect to z

and simplifying yields

∂μ
agg
r (N0, x, z)

∂z
=

∫
supp fr

θeμ(θ)x/ε(1 + eμ
agg
r (N0,x,z)x/ε − eμ(θ)x/ε)−ε−1 fr(θ )dθ∫

supp fr
eμ

agg
r (N0,x,z)x/ε

(
1 + eμ

agg
r (N0,x,z)x/ε − eμ(θ)x/ε

)−ε−1
fr(θ )dθ

.

(A6)
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As z → 0, the denominator goes to eμx/ε , whereas the numerator goes to∫
�

eμx/εθ fr(θ )dθ , which equals zero because
∫
�

θ fr(θ )dθ = 0 by assumption.
Therefore, μ

agg
r (N0, x, z) = μ + o(z) as z → 0.

PROOF OF PROPOSITION 3: If N0 < N∗
0 (x, z), then (A1) holds and

ph
0(N0, x, z) = ph

1(eμmax
d x N0) + k. By applying Lemma 1, we arrive at the

first two pricing equations in Proposition 3. The equation for N ≥ N∗
0 (x, z)

follows immediately from (A2).

PROOF OF PROPOSITION 4: Substituting the formulas for ph
0(N0, x, z) from Propo-

sition 2 and for ph
0(N0, x, 0) from Proposition 1 yields the equations in the first

part of Proposition 4. For clarity, we prove the remainder of the claims in
Proposition 4 in three parts.

Part 1: Disagreement effect is maximized at N0 = 1: The effect of disagree-
ment on the house price at t = 0 weakly increases in N0 up to N0 = 1 and
decreases for 1 ≤ N0 ≤ N∗

0 (x, z). The maximum for 0 < N0 ≤ N∗
0 (x, z) there-

fore equals the value at N0 = 1, which is (eμmax
d x/ε − eμx/ε)/(1 + eμx/ε). This

value exceeds the disagreement effect for all N0 ≥ N∗
0 (x, z) if and only if

μmax
d > μ

agg
r (N0, x, z) for all N0 ≥ N∗

0 (x, z). We prove this in two steps. We first
show that ph

0(N0, x, z), and hence μ
agg
r (N0, x, z), weakly increases in N0 for

N0 ≥ N∗
0 (x, z). Second, to show that μ

agg
r (N0, x, z) < μmax

d for all N0 ≥ N∗
0 (x, z),

we show that limN0→∞ μ
agg
r (N0, x, z) exists and is less than μmax

d .
We may rewrite (A2) as

1 =
∫

�1(N0,x,z)
N0 D

(
ph

0 − k
)

fr(θ )dθ (A7)

+
∫

�2(N0,x,z)
N0

(
k

ph
0 − keμ(θ)x/ε N1/ε

0

)ε

fr(θ )dθ +
∫

�3(N0,x,z)
N0 fr(θ )dθ,

where �1(N0, x, z) = {θ | eμ(θ)x N0 < 1}, �2(N0, x, z) = {θ | 1 ≤ eμ(θ)x N0 ≤ (ph
0/k −

1)ε}, and �3(N0, x, z) = {θ | eμ(θ)x N0 > (ph
0/k − 1)ε}. For a given ph

0, the right side
of (A7) weakly increases in N0: each integrand weakly increases in N0 (for each
θ ), and the integrands coincide at the boundaries of the limits of integration,
meaning that the marginal effect from changing the limits of integration equals
zero. Because the right side of (A2) weakly decreases in ph

0 (as shown in the
proof of Lemma 2), it follows that ph

0(N0, x, z) weakly increases in N0.
This monotonicity means that for all N0 ≥ N∗

0 (x, z), μ
agg
r (N0, x, z) ≤

limN′
0→∞ μ

agg
r (N′

0, x, z). Substituting ph
0(N0, x, z) = k(1 + eμ

agg
r (N0,x,z)x/ε)N1/ε

0 into
(A7) yields

1 =
∫

�1(N0,x,z)

(
1 + eμ

agg
r (N0,x,z)x/ε − N−1/ε

0

)−ε

fr(θ )dθ

+
∫

�2(N0,x,z)

(
1 + eμ

agg
r (N0,x,z)x/ε − eμ(θ)x/ε

)−ε

fr(θ )dθ +
∫

�3(N0,x,z)
N0 fr(θ )dθ.

(A8)
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Because μ
agg
r (N0, x, z) increases in N0, either limN0→∞ μ

agg
r (N0, x, z) exists and is

finite or it equals ∞. In the latter case, because μ(θ ) ≤ μmax
r for all θ ∈ supp fr,

each integral approaches zero as N0 → ∞, leading to a contradiction. (That
the last integral → 0 follows because θ ∈ �3(N0, x, z) if and only if eμ(θ)x N0 ≥
((1 + eμ

agg
r (N0,x,z)x/ε)N1/ε

0 − 1)ε , which implies that μ(θ ) ≥ μ
agg
r (N0, x, z) because

N0 ≥ N∗
0 (x, z) > 1. For all N0 such that μ

agg
r (N0, x, z) > μmax

r ,
∫
�3(N0,x,z) fr(θ )dθ =

0.) Thus, limN0→∞ μ
agg
r (N0, x, z) < ∞. In this case, limN0→∞ �3(N0, x, z) = {θ |

eμ(θ)x/ε ≥ 1 + elimN0→∞ μ
agg
r (N0,x,z)x/ε}, whose measure under fr must equal zero for

otherwise limN0→∞
∫
�3(N0,x,z) N0 fr(θ ) = ∞, a contradiction due to (A8). Because

limN0→∞ �1(N0, x, z) = ∅, taking the limit of (A8) as N0 → ∞ yields 1 = ∫
�

(1 +
elimN0→∞ μ

agg
r (N0,x,z)x/ε − eμ(θ)x/ε)−ε fr(θ )dθ . By Assumption 5, this equation implies

that limN0→∞ μ
agg
r (N0, x, z) < μmax

d .

Part 2: Positivity of the disagreement effect: Because μmax
d > μ, the effect of

disagreement on prices is positive for e−μmax
d x < N0 ≤ 1. Because the effect

decreases for 1 ≤ N0 ≤ N∗
0 (x, z), it is positive for N0 > 1 if it is positive for

N0 ≥ N∗
0 (x, z) in the case that N∗

0 (x, z) < ∞, or if its asymptote as N0 → ∞ is
positive in the case that N∗

0 (x, z) = ∞.
In the first case, positivity obtains when supp fr ⊂ [−μ/z, θmax

d ] and∫
�

fr(θ )dθ = 0 because Lemma 3 shows that μ
agg
r (N0, x, z) > μ for N0 ≥ N∗

0 (x, z).
In the second case, by Proposition 2 and Jensen’s inequality,

1 > (eμmax
d x/ε − eμx/ε)−ε , which implies that eμmax

d x/ε > 1 + eμx/ε . When
N∗

0 (x, z) = ∞, the effect of disagreement on the house price asymptotes
to (eμmax

d x/ε − eμx/ε − 1)/(1 + eμx/ε) > 0.

Part 3: Marginal effect of small disagreement: For any N0 < e−μx, we may find
z > 0 small enough so that N0 < e−μmax

d x because limz→0 μmax
d = μ. By the first

part of Proposition 4, for such small z, ∂ ph
0(N0, x, z)/∂z = 0, proving the first

part of the formula.
For eμx ≤ N0 ≤ 1, we divide the formula in the first part of Proposition 4 by

z and take the limit as z → 0 to obtain the expression in the second part of the
formula.

Finally, for each N0 > 1, because limz→0 N∗
0 (x, z) = 1 as shown in the proof

of Proposition 2, for small enough z > 0, we have N0 ≥ N∗
0 (x, z). Because

μ
agg
r (N0, x, z) = μ + o(z) as shown by Lemma 3, ∂μ

agg
r (N0, x, 0)/∂z = 0 and

∂ ph
0(N0, x, 0)/∂z = 0.

PROOF OF PROPOSITION 5: As noted in the text, ph
0(N0, 0, z) = ph

0(N0, 0, 0) be-
cause when x = 0, μ(θ ) = μ for all θ ∈ �, so z becomes irrelevant for the equi-
librium. As a result, we may take the formula for ph

0(N0, 0, 0) given by Proposi-
tion 1 in the special case in which x = 0 and use it for ph

0(N0, 0, z). Combining
this formula with that for ph

0(N0, x, z) given by Proposition 4 yields the formulas
in Proposition 5. The boom strictly increases for e−μmax

d x ≤ N0 ≤ 1 and strictly
decreases for 1 ≤ N0 ≤ N∗

0 (x, z). Therefore, it is strictly maximized at N0 = 1 as
long as its value at N0 = 1, which equals (eμmax

d x/ε − 1)/2, exceeds the boom for all
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N0 ≥ N∗
0 (x, z), which occurs as long as μmax

d > μ
agg
r (N0, x, z) for all N0 ≥ N∗

0 (x, z).
This inequality obtains by Assumption 5, as shown in the proof of Proposition 4.

PROOF OF PROPOSITION 6: As shown in the proof of Lemma 2, in equilibrium, the
profit (utility for firm owners) of a developer equals pl

0L0 + (ph
1 − ph

0 + k)L1 and
the utility of potential residents equals (v + ph

1 − ph
0)Hbuy

0 . The set of possible
changes to the allocation is summarized by a cash transfer τ (which may vary
across agents) with

∑
τ = 0 and changes �L1 for each developer and �Hbuy

0 for
each potential resident such that

∑
�L1 = ∑

�Hbuy
0 . For a given realization

of ph
1, this change is a Pareto improvement only if (ph

1 − ph
0 + k)�L1 + τ ≥ 0 for

all developers and (v + ph
1 − ph

0)�Hbuy
0 + τ ≥ 0 for all potential residents, with

at least one strict inequality. Summing these inequalities across agents gives∑
k�L1 +∑

v�Hbuy
0 > 0.

We now show that the z = 0 equilibrium (described in the proof of Lemma 2)
is Pareto-efficient for any ph

1. If N0 < 1, a potential resident buys if and only if
v ≥ ph

0(N0, x, z) − ph
1(eμ(θ)x N0) = k. The only feasible �Hbuy

0 are −1 for someone
with Hbuy

0 = 1 and 1 for someone with Hbuy
0 = 0. Because

∑
�L1 = ∑

�Hbuy
0 ,

either one of these changes does not increase the welfare criterion given above.
When N0 ≥ 1, L1 = 0 for all developers and a potential resident buys only if
v ≥ ph

0(N0, x, z) − ph
1(eμ(θ)x N0) = kN1/ε

0 ≥ k. The only feasible �L1 are positive,
and the only feasible changes to �Hbuy

0 are 1 for v ≤ kN1/ε

0 and −1 for v ≥ kN1/ε

0 .
The change to the welfare criterion above can never be positive resulting from
these changes. As a result, the allocation under the z = 0 equilibrium is Pareto-
efficient for any ph

1, meaning that it is belief-neutral Pareto-efficient.
When N0 ≤ e−μmax

d x, potential residents buy when v ≥ ph
0(N0, x, z) −

ph
1(eμ(θ)x N0). This difference is no greater than k because ph

0(N0, x, z) = 2k and
ph

1(eμ(θ)x N0) ≥ k. Because all potential residents have v ≥ k by Assumption 1,
buyers all have v ≥ k, and all potential residents with v > k buy. For the same
argument given in the z = 0 equilibrium above, there does not exist a reallo-
cation that improves welfare for each ph

1, meaning that the equilibrium under
the equilibrium with z > 0 is belief-neutral Pareto-efficient when N0 ≤ e−μmax

d x.
When e−μmax

d x < N0 < N∗
0 (x, z), L1 > 0 for at least one developer. If z > 0,

then, by Assumption 4, there exists a positive measure of potential residents
for whom θ < θmax

d . These potential residents buy only if v ≥ ph
0(N0, x, z) −

ph
1(eμ(θ)x N0) > ph

0(N0, x, z) − ph
1(eμmax

d x N0) = k, where the latter equality uses an
equilibrium condition from the proof of Lemma 2. It follows that there exists a
positive measure of potential residents with v > k who do not buy. For a given
ph

1, we improve the allocation by setting �L1 = −1 and τ = τ ∗ for a developer
holding land and setting �Hbuy

0 = 1 and τ = −τ ∗ for a potential resident with
v > k who does not buy a house, where k + ph

1 − ph
0 ≤ τ ∗ ≤ v + ph

1 − ph
0.

When N0 ≥ N∗
0 (x, z), potential residents buy only if v ≥ k(1 +

eμ
agg
r (N0,x,z)x/ε)N1/ε

0 − ph
1(eμ(θ)x N0). Due to Assumption 4, z > 0 implies that

μ(θ ) varies across potential residents. Because N0 > 1 and μ ≥ 0, ph
1(eμ(θ)x N0)

varies across potential residents. It follows that the purchase cutoff varies
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across potential residents, meaning that we can find a potential resident with
Hbuy

0 = 1 and v = v1 and a potential resident with Hbuy
0 = 0 and v = v2 with

v1 < v2. Setting �Hbuy
0 = −1 and τ = τ ∗ for the first potential resident and

�Hbuy
0 = 1 and τ = −τ ∗ for the second potential resident strictly increases the

welfare objective if v1 + ph
1 − ph

0 ≤ τ ∗ ≤ v2 + ph
1 − ph

0.
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